Skip to main content
Log in

Influence of frozen conditions on the oxygen diffusion coefficient in unsaturated porous materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The efficiency of soil covers used as oxygen barriers to control the generation of acid drainage from sulfidic mine wastes can be evaluated in terms of the diffusive oxygen flux reaching the underlying wastes. Oxygen diffusion has been extensively investigated over the last few decades for unsaturated porous materials that are not frozen. However, little attention has been paid to materials that are fully or partially frozen, and thus, the diffusion of oxygen through soil covers during the winter freezing period has been generally neglected. This paper presents a laboratory method developed to evaluate the effective diffusion coefficient of oxygen (De) in frozen, inert materials. The method is a modified version of the conventional double-chamber cell in which the temperature and unfrozen volumetric water content of the sample are measured in addition to the more commonly monitored change in oxygen concentration. Several tests were conducted on non-reactive materials: that is, a sand at multiple degrees of saturation (Sr = 20, 30, 39, and 42%), a silt (Sr = 47%), and a mixture of the two (Sr = 90%). Experimental data were interpreted using the POLLUTE code. Values of De for frozen materials were slightly lower than those obtained at ambient laboratory temperatures. In addition to the development of an empirical method for determining De, a preliminary model based on the model proposed by Aachib et al. (Water Air Soil Pollut 156:163–193, 2004) was created for the prediction of De in frozen materials by defining the involved parameters as temperature-dependent. The results indicate that predicated values of De are slightly higher than experimental values, suggesting that there remains room for improvement in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aachib A, Mbonimpa M, Aubertin M (2004) Measurement and prediction of the oxygen diffusion coefficient in unsaturated media with applications to soil covers. Water Air Soil Pollut 156:163–193

    Article  Google Scholar 

  2. Aubertin M, Chapuis R, Aachib M, Bussière B, Ricard J, Tremblay L (1995) Évaluation en laboratoire de barrières sèches construites à partir de résidus miniers. MEND project 2.22.2a, CANMET, Ottawa

  3. Aubertin M, Bussière B, Monzon M, Joanes A, Gagnon D, Barbera J, Aachib M, Bédard C, Chapuis R, Bernier L (1999) Étude sur les barrières sèches construites à partir de résidus miniers. Phase II: Essais en place. MEND Project 2.22.2c, CANMET, Ottawa

  4. Aubertin M, Aachib M, Authier K (2000) Evaluation of diffusive gas flux through covers with a GCL. Geotext Geomembr 18(2):215–233

    Article  Google Scholar 

  5. Aubertin M, Bussière B, Bernier L (2002) Environnement et gestion des résidus miniers. Presses Internationales de Polytechnique, Corporation de l’École Polytechnique de Montréal, 26 février 2003, Montréal, Canada

  6. Azmatch TF, Sego DC, Arenson LU, Biggar KW (2012) New ice lens initiation condition for frost heave in fine-grained soils. Cold Reg Sci Technol 82:8–13

    Article  Google Scholar 

  7. Blowes DW, Jambor JL, Alpers CN (1994) The environmental geochemistry of sulfide mine-wastes. Mineralogical Association of Canada, Short Course Handbook, vol 22

  8. Bussière B, Aubertin M, Zagury GJ, Potvin R, Benzaazoua M (2005) Principaux défis et pistes de solution pour la restauration des aires d’entreposage de rejets miniers abandonnées. In: Proceedings of the 2e symposium sur l’environnement et les mines, organisé par l’ICM—Rouyn-Noranda, on CD-ROM, p 29

  9. Bussière B, Maqsoud A, Aubertin M, Martschuk J, McMullen J, Julien M (2006) Performance of the oxygen limiting cover at the LTA site, Malartic, Quebec. CIM Bull 1(6):1–11

    Google Scholar 

  10. Caruccio F (1975) Estimating the acid potential of coal mine refuse. Ecol Resour Degrad Renewal 15:197–205

    Google Scholar 

  11. Coulombe V (2012) Performance de recouvrements isolants partiels pour contrôler l’oxydation de résidus miniers sulfureux. Master thesis, Mineral Engineering, École Polytechnique Montréal offered in extension at UQAT

  12. Coulombe V, Bussie`re B, Coˆte´ J, Garneau P (2012) Performance of insulation covers to control acid mine drainage in cold environments. In: 15th international conference on cold regions engineering 2012. Sustainable infrastructure development in a changing cold environment, Quebec City, Canada, 19–22 August 2012, pp 789–799

  13. Dagesse DF (2010) Freezing-induced bulk soil volume changes. Can J Soil Sci 90(3):389–401

    Article  Google Scholar 

  14. Dawson RF, Morin KA (1996) Acid mine drainage in permafrost regions: issues, control strategies and research requirements. MEND Program Report 1.61.2. CANMET, Ottawa, ON, Canada

  15. Demers I (2008) Performance d’une barrière à l’oxygène constituée de résidus miniers faiblement sulfureux pour contrôler la production de drainage minier acide. Ph.D thesis, Université du Québec en Abitibi-Témiscamingue

  16. Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Miner Eng 21(4):317–329

    Article  Google Scholar 

  17. Demers I, Bussière B, Mbonimpa M, Benzaazoua M (2009) Oxygen diffusion and consumption in low-sulphide tailings covers. Can Geotech J 46(4):454–469. https://doi.org/10.1139/t08-132

    Article  Google Scholar 

  18. Demers I, Bussière B, Benzaazoua M, Mbonimpa M, Blier A (2010) Preliminary optimization of a single-layer cover made of desulfurized tailings: application to the Doyon Mine tailings impoundment. Soc Min Metall Explor Annu Trans 326:21–33

    Google Scholar 

  19. Denny MW (1993) Air and water: the biology and physics of life’s media. Princeton University Press, Princeton

    Google Scholar 

  20. Dirksen C, Miller R (1966) Closed-system freezing of unsaturated soil. Soil Sci Soc Am J 30(2):168–173

    Article  Google Scholar 

  21. Down CG, Stocks J (1977) Environmental impact of mining. Applied Science publisher Ltd, London

    Google Scholar 

  22. Elberling B (2001) Environmental controls of the seasonal variation in oxygen uptake in sulfidic tailings deposited in a permafrost-affected area. Water Resour Res 37(1):99–107. https://doi.org/10.1029/2000wr900259

    Article  Google Scholar 

  23. Elberling B (2005) Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Reg Sci Technol 41(2):121–133. https://doi.org/10.1016/j.coldregions.2004.09.004

    Article  Google Scholar 

  24. Elberling B, Nicholson RV, Reardon EJ, Tibble R (1994) Evaluation of sulphide oxidation rates: a laboratory study comparing oxygen fluxes and rates of oxidation product release. Can Geotech J 31(3):375–383. https://doi.org/10.1139/t94-045

    Article  Google Scholar 

  25. Éthier M, Bussière B, Benzaazoua M, Garneau P (2012) Effect of temperature on the weathering of various waste rock types from the Raglan mine. In: Proceedings of the 15th international specialty conference on cold regions engineering 2012: sustainable infrastructure development in a changing cold environment, Quebec City, QC, Canada, 19–22 August, pp 800–810

  26. Hallett J (1963) The temperature dependence of the viscosity of supercooled water. Proc Phys Soc 82(6):1046

    Article  Google Scholar 

  27. Hivon E, Sego D (1993) Distribution of saline permafrost in the Northwest territories, Canada. Can Geotech J 30(3):506–514

    Article  Google Scholar 

  28. Holubec I (2004) Covers for reactive tailings located in permafrost regions review, MEND program report 1.61. 6. Natural Resources Canada, Minerals and Metals Sector: Ottawa, ON, Canada

  29. Konrad J-M (1989) Influence of cooling rate on the temperature of ice lens formation in clayey silts. Cold Reg Sci Technol 16(1):25–36

    Article  Google Scholar 

  30. Konrad J-M (2005) Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils. Can Geotech J 42(1):38–50

    Article  Google Scholar 

  31. Konrad J-M, Morgenstern NR (1981) The segregation potential of a freezing soil. Can Geotech J 18(4):482–491

    Article  Google Scholar 

  32. Konrad J-M, Morgenstern N (1982) Prediction of frost heave in the laboratory during transient freezing. Can Geotech J 19(3):250–259

    Article  Google Scholar 

  33. Korshunov A, Churkin S, Nevzorov A (2014) Numerical simulation of laboratory freezing tests of frost-susceptible soils. https://doi.org/10.1201/b17017-174

    Chapter  Google Scholar 

  34. Kostenbader P, Haines G (1970) High density sludge treats acid mine water. Coal Age 75(9):90–97

    Google Scholar 

  35. Martel VB, Bussière B, Côté J, Mbonimpa M (2015) Laboratory column experiment to evaluate oxygen diffusion through covers with capillary barrier effects subjected to freeze-thaw cycles. In: Proceedings of the 16th international conference on cold regions engineering, Salt Lake City, Utah, 19–22 July. ASCE, pp 34–45

  36. Mbonimpa M, Aubertin M (2003) Mouvement des gaz en milieux poreux partiellement saturés. In: Technical report EPM-RT-2003-04. École Polytechnique de Montréal, p 45

  37. Mbonimpa M, Aubertin M, Aachib M, Bussière B (2003) Diffusion and consumption of oxygen in unsaturated cover materials. Can Geotech J 40(5):916–932

    Article  Google Scholar 

  38. Mbonimpa M, Aubertin M, Bussière B (2011) Oxygen consumption test to evaluate the diffusive flux into reactive tailings: interpretation and numerical assessment. Can Geotech J 48(6):878–890. https://doi.org/10.1139/t11-015

    Article  Google Scholar 

  39. MEND (2001) Mine environment neutral drainage (MEND) Manual report 5.4.2, Vol 4: prevention and control. Mine Environment Neutral Drainage (MEND) Canada Center for Mineral and Energy Technology, Canada

  40. Millington R, Quirk J (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207

    Article  Google Scholar 

  41. Millington R, Shearer R (1971) Diffusion in aggregated porous media. Soil Sci 111(6):372–378

    Article  Google Scholar 

  42. Newman GP, Wilson GW (1997) Heat and mass transfer in unsaturated soils during freezing. Can Geotech J 34(1):63–70

    Article  Google Scholar 

  43. Nordstrom DK (2011) Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl Geochem 26(11):1777–1791

    Article  Google Scholar 

  44. Nordstrom DK (2012) Models, validation, and applied geochemistry: issues in science, communication, and philosophy. Appl Geochem 27(10):1899–1919

    Article  Google Scholar 

  45. Nyameogo G (2017) Évaluation de la diffusion moléculaire de l’oxygène en milieux poreux non saturés gelés: développement d’un système de mesure et d’un modèle théorique préliminaire. Master thesis, Mineral Engineering, École Polytechnique Montréal offered in extension at UQAT

  46. O’Kane Consultants Inc. (2012) Cold regions cover system design technical guidance document. MEND program, report 1.61.5c

  47. Othman MA, Benson CH (1993) Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay. Can Geotech J 30(2):236–246

    Article  Google Scholar 

  48. Reid R, Prausnitz J, Sherwood T (1977) The properties of glass and liquids, 3rd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  49. Richard T (1969) Calculating the oxygen diffusion coefficient in water. Cornell Waste Management Institute, Cornell University, Ithaca, NY. http://compost.css.cornell.edu/oxygen/oxygen.diff.water.html

  50. Rowe R, Booker J, Fraser M (1994) POLLUTEv6 and POLLUTE-GUI user’s guide. GAEA Environmental Engineering Ltd, London

    Google Scholar 

  51. Rykaart M, Hockley D (2009) Mine waste covers in cold regions. MEND program, report 1.61.5a

  52. Rykaart M, Hockley D (2010) Cold regions cover research-phase 2. MEND program report 1.61.5b. Mine Environment Neutral Drainage (MEND), Canada

  53. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15(8):4399–4981

    Article  Google Scholar 

  54. Sander SP, Golden DM, Kurylo MJ, Moortgat GK, Wine PH, Ravishankara AR, Kolb CE, Molina MJ, Finlayson-Pitts BJ, Huie RE, Orkin VL, Friedl RR, Keller-Rudek H (2006) Chemical kinetics and photochemical data for use in atmospheric studies: evaluation number 15. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

  55. She W, Cao X, Zhao G, Cai D, Jiang J, Hu X (2018) Experimental and numerical investigation of the effect of soil type and fineness on soil frost heave behavior. Cold Reg Sci Technol 148:148–158

    Article  Google Scholar 

  56. Sheng D, Zhang S, Yu Z, Zhang J (2013) Assessing frost susceptibility of soils using PCHeave. Cold Reg Sci Technol 95:27–38

    Article  Google Scholar 

  57. Sheshukov AY, Nieber JL (2011) One-dimensional freezing of nonheaving unsaturated soils: model formulation and similarity solution. Water Resour Res 47(11):W11519

    Article  Google Scholar 

  58. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167(3921):1121–1123

    Article  Google Scholar 

  59. Spencer Guthrie W, Hermansson Å (2003) Frost heave and water uptake relations in variably saturated aggregate base materials. Transp Res Rec J Transp Res Board 1821:13–19

    Article  Google Scholar 

  60. Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer, Berlin

  61. Wan X, Lai Y, Wang C (2015) Experimental study on the freezing temperatures of saline silty soils. Permafr Periglac Process 26(2):175–187

    Article  Google Scholar 

  62. Wang X, Nguyen T (2007) A theoretical study of the effects of two-phase transport properties of the catalyst and gas diffusion layers in the cathode on the performance of a PEMFC. ECS Trans 11(1):693–702

    Article  Google Scholar 

  63. Welty JR, Wicks CE, Rorrer G, Wilson RE (1984) Fundamentals of momentum, heat, and mass transfer. Wiley, New York

    Google Scholar 

  64. Wilke C, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1(2):264–270

    Article  Google Scholar 

  65. Williams JR (1970) Ground water in the permafrost regions of Alaska, vol 696. US Government Printing Office, Washington

    Google Scholar 

  66. Xiao Z, Lai Y, Zhang M (2018) Study on the freezing temperature of saline soil. Acta Geotech 13(1):195–205

    Article  Google Scholar 

  67. Zhang C, Liu Z Freezing of water confined in porous materials: role of adsorption and unfreezable threshold. Acta Geotechnica. https://doi.org/10.1007/s11440-018-0637-6

    Article  Google Scholar 

  68. Zheng H, Kanie S, Niu F, Akagawa S, Li A (2016) Application of practical one-dimensional frost heave estimation method in two-dimensional situation. Soils Found 56(5):904–914

    Article  Google Scholar 

  69. Zhou G-Q, Zhou Y, Hu K, Wang Y-J, Shang X-Y (2018) Separate-ice frost heave model for one-dimensional soil freezing process. Acta Geotech 13:207–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamert Mbonimpa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyameogo, G.F.T., Mbonimpa, M., Bussière, B. et al. Influence of frozen conditions on the oxygen diffusion coefficient in unsaturated porous materials. Acta Geotech. 15, 409–421 (2020). https://doi.org/10.1007/s11440-018-0690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0690-1

Keywords

Navigation