Skip to main content
Log in

Fabric evolution of granular materials along imposed stress paths

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The stress–strain behavior of a granular material is dominated by its internal structure, which is related to the spatial connectivity of particles, and the force chain network. In this study, a series of discrete element simulations were carried out to investigate the evolution of internal structure and force chain networks in initially isotropic granular materials along various imposed stress paths. The fabric tensor of the strong sub-network, which is the bearing network toward loading, can be related to the applied stresses uniquely. The principal directions of fabric tensor of the strong sub-network coincide with those of stress tensor during the loading process in the Lode coordinate system. The fabric of the whole contact network in the pre- and post-peak deformation stages can be related to the applied stresses as \(q_{\phi } = B\left( {q/p} \right)^{z}\) (B and z are constants depending on loading condition, such as the stress paths and mean stress level) and \(\phi_{1} :\phi_{2} :\phi_{3} \approx \left( {\sigma_{1} } \right)^{0.4} :\left( {\sigma_{2} } \right)^{0.4} :\left( {\sigma_{3} } \right)^{0.4}\), respectively. At the critical stress state, the deviator of fabric tensor of the strong sub-network is much larger than that of the whole contact network. When plotted on the π-plane, the fabric state of the strong sub-network can be expressed as a Lade’s surface, while the fabric state of the whole network corresponds to an inverted Lade’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Antony SJ, Momoh RO, Kuhn MR (2004) Micromechanical modelling of oval particulates subjected to bi-axial compression. Comput Mater Sci 29(4):494–498. https://doi.org/10.1016/j.commatsci.2003.12.007

    Article  Google Scholar 

  2. Azéma E, Radjaï F (2010) Stress-strain behavior and geometrical properties of packings of elongated particles. Phys Rev E 81(5):051304-1-17. https://doi.org/10.1103/physreve.81.051304

    Article  Google Scholar 

  3. Barreto D, O’Sullivan C (2012) The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions. Granul Matter 14(4):505–521. https://doi.org/10.1007/s10035-012-0354-z

    Article  Google Scholar 

  4. Chang CS, Liu Y (2013) Stress and fabric in granular material. Theor Appl Mech Lett 3(2):21002. https://doi.org/10.1063/2.1302102

    Article  Google Scholar 

  5. Chowdhury EQ, Nakai T (1998) Consequences of the t(ij)-concept and a new modeling approach. Comput Geotech 23(3):131–164. https://doi.org/10.1016/S0266-352X(98)00017-2

    Article  Google Scholar 

  6. Christoffersen J, Mehrabadi MM, Nemat-Nasser S (1981) A micromechanical description of granular material behavior. J Appl Mech Trans ASME 48(2):339–344. https://doi.org/10.1115/1.3157619

    Article  MATH  Google Scholar 

  7. Collins IF, Muhunthan B (2003) On the relationship between stress–dilatancy, anisotropy, and plastic dissipation for granular materials. Géotechnique 53(7):611–618. https://doi.org/10.1680/geot.2003.53.7.611

    Article  Google Scholar 

  8. Cui L, O’Sullivan C (2006) Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique 56(7):455–468. https://doi.org/10.1680/geot.2006.56.7.455

    Article  Google Scholar 

  9. Dafalias YF (2016) Must critical state theory be revisited to include fabric effects? Acta Geotech 11(3):479–491. https://doi.org/10.1007/s11440-016-0441-0

    Article  Google Scholar 

  10. Fu P, Dafalias YF (2011) Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int J Numer Anal Methods Geomech 35(18):1918–1948. https://doi.org/10.1002/nag.988

    Article  Google Scholar 

  11. Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38(4):370–390. https://doi.org/10.1002/nag.2211

    Article  Google Scholar 

  12. Kruyt NP, Antony SJ (2007) Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. Phys Rev E Phys 75(5):051308-1-8. https://doi.org/10.1103/physreve.75.051308

    Article  Google Scholar 

  13. Kuhn MR, Sun WC, Wang Q (2015) Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech 10(4):399–419. https://doi.org/10.1007/s11440-015-0397-5

    Article  Google Scholar 

  14. Lade PV (2008) Failure criterion for cross-anisotropic soils. J Geotech Geoenviron Eng 134(1):117–124. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(117)

    Article  Google Scholar 

  15. Lade PV, Duncan JM (1975) Elastoplastic stress-strain theory for cohesionless soil. J Geotech Geoenviron Eng 101(GT10):1037–1053

    Google Scholar 

  16. Li XS, Dafalias YF (2011) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324

    Article  Google Scholar 

  17. Love AEH (1892) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Matsuoka H, Nakai T (1974) stress-deformation and strength characteristics of soil under three different principal stresses. Proc JSCE 1974(232):59–70. https://doi.org/10.2208/jscej1969.1974.232_59

    Article  Google Scholar 

  19. Mehrabadi MM, Nemat-Nasser S, Oda M (1982) On statistical description of stress and fabric in granular materials. Int J Numer Anal Methods Geomech 6(1):95–108. https://doi.org/10.1002/nag.1610060107

    Article  MathSciNet  MATH  Google Scholar 

  20. Ng T (2001) Fabric evolution of ellipsoidal arrays with different particle shapes. J Eng Mech 127(10):994–999. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(994)

    Article  Google Scholar 

  21. Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108. https://doi.org/10.3208/sandf1972.22.4_96

    Article  Google Scholar 

  22. Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16(1–2):35–45. https://doi.org/10.1016/0167-6636(93)90025-M

    Article  Google Scholar 

  23. Radjai F, Wolf D, Jean M, Moreau J-J (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80(1):61–64. https://doi.org/10.1103/PhysRevLett.80.61

    Article  Google Scholar 

  24. Radjaï F, Jean M, Moreau J-J, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274–277. https://doi.org/10.1103/PhysRevLett.77.274

    Article  Google Scholar 

  25. Radjaï F, Delenne JY, Azéma E, Roux S (2012) Fabric evolution and accessible geometrical states in granular materials. Granul Matter 14(2):259–264. https://doi.org/10.1007/s10035-012-0321-8

    Article  Google Scholar 

  26. Satake M (1978) Constitution of mechanics of granular materials through the graph theory. In: Proceedings of US–Japan seminar on continuum-mechanical and statistical approaches in the mechanics of granular materials, pp 47–62

  27. Shi J, Guo P (2018) Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths. Soils Found 58(2):249–263. https://doi.org/10.1016/j.sandf.2018.02.001

    Article  Google Scholar 

  28. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53. https://doi.org/10.1680/geot.2000.50.1.43

    Article  Google Scholar 

  29. Thornton C, Antony SJ (2000) Quasi-static shear deformation of a soft particle system. Powder Technol 109(1–3):179–191. https://doi.org/10.1016/S0032-5910(99)00235-1

    Article  Google Scholar 

  30. Thornton C, Zhang L (2010) On the evolution of stress and microstructure during general 3D deviatoric straining of granular media. Géotechnique 60(5):333–341. https://doi.org/10.1680/geot.2010.60.5.333

    Article  Google Scholar 

  31. Wan RG, Guo PJ (2004) Stress dilatancy and fabric dependencies on sand behavior. J Eng Mech 130(6):635–645. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(635)

    Article  Google Scholar 

  32. Wan R, Pouragha M (2015) Fabric and connectivity as field descriptors for deformations in granular media. Contin Mech Thermodyn 27(1–2):243–259. https://doi.org/10.1007/s00161-014-0370-9

    Article  Google Scholar 

  33. Wang R, Fu P, Zhang JM, Dafalias YF (2016) DEM study of fabric features governing undrained post-liquefaction shear deformation of sand. Acta Geotech 11(6):1321–1337. https://doi.org/10.1007/s11440-016-0499-8

    Article  Google Scholar 

  34. Weber J (1966) Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bull Liaison des Ponts-et-chaussées 20:1–20

    Google Scholar 

  35. Zhao J, Guo N (2013) Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8):695–704. https://doi.org/10.1680/geot.12.P.040

    Article  Google Scholar 

Download references

Acknowledgements

Funding provided by the Natural Sciences and Engineering Research Council of Canada and the China Scholarship Council (CSC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Guo, P. Fabric evolution of granular materials along imposed stress paths. Acta Geotech. 13, 1341–1354 (2018). https://doi.org/10.1007/s11440-018-0665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0665-2

Keywords

Navigation