Skip to main content
Log in

Multiscale modeling and analysis of compaction bands in high-porosity sandstones

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We present a multiscale investigation on the initiation and development of compaction bands in high-porosity sandstones based on an innovative hierarchical multiscale approach. This approach couples the finite element method and the discrete element method (DEM) to offer direct, rigorous linking of the microscopic origins and mechanisms with complex macroscopic phenomena observed in granular rocks such as strain localization and failure. To simulate compaction band in granular cementitious sandstone, we adopt a bonded contact model with normal and tangential interparticle cohesions in the DEM and propose a dual-porosity structure consisting of macro-pores and interstitial voids for the representative volume element to mimic the typical meso-structure of high-porosity sandstones. In the absence of particle crushing, our multiscale analyses identify debonding and pore collapses as two major contributors to the formation of compaction bands. The critical pressures predicted by our simulations, corresponding to surges of debonding and pore collapse events, agree well with the estimations from field data. The occurrence patterns of compaction band are found closely related to specimen heterogeneity, porosity and confining pressure. Other deformation band patterns, including shear-enhanced compaction bands and compactive shear bands, were also observed under relatively low confining pressure conditions with a rough threshold at \(0.55P^{*}\) (\(P^{*}\) is the critical pressure) on the failure envelop. Key microscopic characteristics attributable to the occurrence of these various deformation patterns, including fabric anisotropy, particle rotation, debonding and pore collapse, are examined. Shear-enhanced compaction bands and pure compaction bands bear many similarities in terms of these microscopic characteristics, whereas both differ substantially from compactive shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Andrade JE, Avila CF, Hall SA, Lenoir N, Viggiani G (2011) Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics. J Mech Phys Solids 59(2):237–250. doi:10.1016/j.jmps.2010.10.009

    Article  MATH  Google Scholar 

  2. Antonellini MA, Aydin A, Pollard DD (1994) Microstructure of deformation bands in porous sandstones at Arches National Park, Utah. J Struct Geol 16(7):941–959. doi:10.1016/0191-8141(94)90077-9

    Article  Google Scholar 

  3. Aydin A (1978) Small faults formed as deformation bands in sandstone. Pure Appl Geophys 116(4–5):913–930. doi:10.1007/BF00876546

    Article  Google Scholar 

  4. Aydin A, Ahmadov R (2009) Bed-parallel compaction bands in aeolian sandstone: their identification, characterization and implications. Tectonophysics 479(3–4):277–284. doi:10.1016/j.tecto.2009.08.033

    Article  Google Scholar 

  5. Aydin A, Borja RI, Eichhubl P (2006) Geological and mathematical framework for failure modes in granular rock. J Struct Geol 28(1):83–98. doi:10.1016/j.jsg.2005.07.008

    Article  Google Scholar 

  6. Baud P, Klein E, Wong TF (2004) Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity. J Struct Geol 26(4):603–624. doi:10.1016/j.jsg.2003.09.002

    Article  Google Scholar 

  7. Bernabé Y, Fryer DT, Hayes JA (1992) The effect of cement on the strength of granular rocks. Geophys Res Lett 19(14):1511. doi:10.1029/92GL01288

    Article  Google Scholar 

  8. Bésuelle P (2001) Compacting and dilating shear bands in porous rock: theoretical and experimental conditions. J Geophys Res Solid Earth 106(B7):13435–13442. doi:10.1029/2001JB900011

    Article  Google Scholar 

  9. Bésuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37(8):1223–1237. doi:10.1016/S1365-1609(00)00057-5

    Article  Google Scholar 

  10. Challa V, Issen KA (2004) Conditions for compaction band formation in porous rock using a two-yield surface model. J Eng Mech 130(9):1089–1097. doi:10.1061/(ASCE)0733-9399(2004)130:9(1089)

    Article  Google Scholar 

  11. Charalampidou E-M, Hall SA, Stanchits S, Viggiani G, Lewis H (2014) Shear-enhanced compaction band identification at the laboratory scale using acoustic and full-field methods. Int J Rock Mech Min Sci 67:240–252. doi:10.1016/j.ijrmms.2013.05.006

    Google Scholar 

  12. Charalampidou EM, Hall SA, Stanchits S, Lewis H, Viggiani G (2011) Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression. Tectonophysics 503(1–2):8–17. doi:10.1016/j.tecto.2010.09.032

    Article  Google Scholar 

  13. Cheng Y, Nakata Y, Bolton M (2003) Discrete element simulation of crushable soil. Géotechnique 53(7):633–641. doi:10.1680/geot.2003.53.7.633

    Article  Google Scholar 

  14. Cheung CSN, Baud P, Wong TF (2012) Effect of grain size distribution on the development of compaction localization in porous sandstone. Geophys Res Lett 39(21):6–10. doi:10.1029/2012GL053739

    Article  Google Scholar 

  15. Ciantia MO, Hueckel T (2013) Weathering of submerged stressed calcarenites: chemo-mechanical coupling mechanisms. Géotechnique 63(9):768–785. doi:10.1680/geot.SIP13.P.024

    Article  Google Scholar 

  16. Das A, Nguyen GD, Einav I (2011) Compaction bands due to grain crushing in porous rocks: a theoretical approach based on breakage mechanics. J Geophys Res 116(B8):B08203. doi:10.1029/2011JB008265

    Article  Google Scholar 

  17. Das A, Nguyen GD, Einav I (2013) The propagation of compaction bands in porous rocks based on breakage mechanics. J Geophys Res Solid Earth 118(5):2049–2066. doi:10.1002/jgrb.50193

    Article  Google Scholar 

  18. Dattola G, di Prisco C, Redaelli I, Utili S (2014) A distinct element method numerical investigation of compaction processes in highly porous cemented granular materials. Int J Numer Anal Methods Geomech 38(11):1101–1130. doi:10.1002/nag.2241

    Article  Google Scholar 

  19. Delenne JY, El Youssoufi MS, Cherblanc F, Bénet JC (2004) Mechanical behaviour and failure of cohesive granular materials. Int J Numer Anal Methods Geomech 28(15):1577–1594. doi:10.1002/nag.401

    Article  MATH  Google Scholar 

  20. Eichhubl P, Taylor WL, Pollard DD, Aydin A (2004) Paleo-fluid flow and deformation in the Aztec Sandstone at the Valley of Fire, Nevada—evidence for the coupling of hydrogeologic, diagenetic, and tectonic processes. Geol Soc Am Bull 116(9):1120. doi:10.1130/B25446.1

    Article  Google Scholar 

  21. Eichhubl P, Hooker JN, Laubach SE (2010) Pure and shear-enhanced compaction bands in Aztec Sandstone. J Struct Geol 32(12):1873–1886. doi:10.1016/j.jsg.2010.02.004

    Article  Google Scholar 

  22. Fortin J, Stanchits S, Dresen G, Guéguen Y (2006) Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J Geophys Res 111(B10):B10203. doi:10.1029/2005JB003854

    Article  Google Scholar 

  23. Fortin J, Stanchits S, Dresen G, Gueguen Y (2009) Acoustic emissions monitoring during inelastic deformation of porous sandstone: comparison of three modes of deformation. Pure Appl Geophys 166(5–7):823–841. doi:10.1007/s00024-009-0479-0

    Article  Google Scholar 

  24. Fossen H, Schultz RA, Shipton ZK, Mair K (2007) Deformation bands in sandstone: a review. J Geol Soc Lond 164(4):1–15. doi:10.1144/0016-76492006-036

    Article  Google Scholar 

  25. Fossen H, Schultz RA, Torabi A (2011) Conditions and implications for compaction band formation in the Navajo Sandstone, Utah. J Struct Geol 33(10):1477–1490. doi:10.1016/j.jsg.2011.08.001

    Article  Google Scholar 

  26. Gao Z, Zhao J (2013) Strain localization and fabric evolution in sand. Int J Solids Struct 50(22–23):3634–3648. doi:10.1016/j.ijsolstr.2013.07.005

    Article  Google Scholar 

  27. Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99(11):789–818. doi:10.1002/nme.4702

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo N, Zhao J (2016) 3D multiscale modeling of strain localization in granular media. Comput Geotech 80:360–372. doi:10.1016/j.compgeo.2016.01.020

    Article  Google Scholar 

  29. Guo N, Zhao J (2016) Multiscale insights into classical geomechanics problems. Int J Numer Anal Methods Geomech 40(3):367–390. doi:10.1002/nag.2406

    Article  Google Scholar 

  30. Guo N, Zhao J (2016) Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput Methods Appl Mech Eng 305:37–61. doi:10.1016/j.cma.2016.03.004

    Article  MathSciNet  Google Scholar 

  31. Guo N, Zhao J, Sun WC (2016) Multiscale analysis of shear failure of thick-walled hollow cylinder in dry sand. Géotech Lett 6(1):77–82. doi:10.1680/jgele.15.00149

    Article  Google Scholar 

  32. Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res 105:16683–16697. doi:10.1029/2000JB900085

    Article  Google Scholar 

  33. Hill RE (1989) Analysis of deformation bands in the Aztec Sandstone. University of Nevada, Reno

    Google Scholar 

  34. Holcomb D, Rudnicki JW, Issen KA, Sternlof K (2007) Compaction localization in the Earth and the laboratory: state of the research and research directions. Acta Geotech 2(1):1–15. doi:10.1007/s11440-007-0027-y

    Article  Google Scholar 

  35. Holcomb DJ, Olsson WA (2003) Compaction localization and fluid flow. J Geophys Res 108(B6):2290–2302. doi:10.1029/2001JB000813

    Article  Google Scholar 

  36. Issen KA, Rudnicki JW (2000) Conditions for compaction bands in porous rock. J Geophys Res 105(B9):21529–21536. doi:10.1029/2000JB900185

    Article  Google Scholar 

  37. Katsman R, Aharonov E (2006) A study of compaction bands originating from cracks, notches, and compacted defects. J Struct Geol 28(3):508–518. doi:10.1016/j.jsg.2005.12.007

    Article  Google Scholar 

  38. Katsman R, Aharonov E, Haimson BC (2009) Compaction bands induced by borehole drilling. Acta Geotech 4(3):151–162. doi:10.1007/s11440-009-0086-3

    Article  Google Scholar 

  39. Kim SY, Sasaki Y (2013) Simulation of crack formation in an anisotropic coke using discrete element method. Fuel 106:357–364. doi:10.1016/j.fuel.2012.10.070

    Article  Google Scholar 

  40. Klein E, Baud P, Reuschlé T, Wong TF (2001) Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression. Phys Chem Earth Part A Solid Earth Geodyn 26(1–2):21–25. doi:10.1016/S1464-1895(01)00017-5

    Article  Google Scholar 

  41. Liu C, Pollard DD, Gu K, Shi B (2015) Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J Geophys Res Solid Earth 120(12):8153–8168. doi:10.1002/2015JB012374

    Article  Google Scholar 

  42. Liu Y, Sun W, Yuan Z, Fish J (2016) A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials. Int J Numer Methods Eng 106(2):129–160. doi:10.1002/nme.5139

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma X, Haimson BC (2016) Failure characteristics of two porous sandstones subjected to true triaxial stresses. J Geophys Res Solid Earth 121(9):6477–6498. doi:10.1002/2016JB012979

    Article  Google Scholar 

  44. Marketos G, Bolton MD (2005) Compaction bands as observed in DEM simulations In: Proceedings of the 5th international conference on micromechanics of granular media, powders and grains, pp 1405–1408

  45. Marketos G, Bolton MD (2007) A DEM study of compaction band formation. In: Bifurcations, instabilities, degradation in geomechanics. Springer, Berlin, pp 155–171

  46. Marketos G, Bolton MD (2009) Compaction bands simulated in discrete element models. J Struct Geol 31(5):479–490. doi:10.1016/j.jsg.2009.03.002

    Article  Google Scholar 

  47. Meier HA, Steinmann P, Kuhl E (2008) Towards multiscale computation of confined granular media-Contact forces, stresses and tangent operators. Tech Mech 16(1):77–88

    Google Scholar 

  48. Miehe C, Dettmar J, Zäh D (2010) Homogenization and two-scale simulations of granular materials for different microstructural constraints. Int J Numer Methods Eng 83(8–9):1206–1236. doi:10.1002/nme.2875

    Article  MATH  Google Scholar 

  49. Mollema PN, Antonellini MA (1996) Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone. Tectonophysics 267(1–4):209–228. doi:10.1016/S0040-1951(96)00098-4

    Article  Google Scholar 

  50. Nguyen TK, Combe G, Caillerie D, Desrues J (2014) FEM x DEM modelling of cohesive granular materials: numerical homogenisation and multi-scale simulation. Acta Geophys 62(3):1–18. doi:10.2478/s11600-013-00

    Google Scholar 

  51. Nitka M, Combe G, Dascalu C, Desrues J (2011) Two-scale modeling of granular materials: a DEM–FEM approach. Granul Matter 13(3):277–281. doi:10.1007/s10035-011-0255-6

    Article  Google Scholar 

  52. Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108. doi:10.3208/sandf1972.22.4_96

    Article  Google Scholar 

  53. Oka F, Kimoto S, Higo Y, Ohta H, Sanagawa T, Kodaka T (2011) An elasto-viscoplastic model for diatomaceous mudstone and numerical simulation of compaction bands. Int J Numer Anal Methods Geomech 35(2):244–263. doi:10.1002/nag.987

    Article  MATH  Google Scholar 

  54. Olsson WA (1999) Theoretical and experimental investigation of compaction bands in porous rock. J Geophys Res 104(B4):7219–7228. doi:10.1029/1998JB900120

    Article  Google Scholar 

  55. Olsson WA (2001) Quasistatic propagation of compaction fronts in porous rock. Mech Mater 33(11):659–668. doi:10.1016/S0167-6636(01)00078-3

    Article  Google Scholar 

  56. Olsson WA, Holcomb DJ (2000) Compaction localization in porous rock. Geophys Res Lett 27(21):3537–3540. doi:10.1029/2000GL011723

    Article  Google Scholar 

  57. Olsson WA, Holcomb DJ, Rudnicki JW (2002) Compaction localization in porous sandstone: implications for reservoir mechanics. Oil Gas Sci Technol 57(5):591–599. doi:10.2516/ogst:2002040

    Article  Google Scholar 

  58. Park JW, Song JJ (2009) Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int J Rock Mech Min Sci 46(8):1315–1328. doi:10.1016/j.ijrmms.2009.03.007

    Article  Google Scholar 

  59. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8 SPEC.ISS.):1329–1364. doi:10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  60. Rudnicki JW (2004) Shear and compaction band formation on an elliptic yield cap. J Geophys Res 109(B3):1–10. doi:10.1029/2003JB002633

    Article  Google Scholar 

  61. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394. doi:10.1016/0022-5096(75)90001-0

    Article  Google Scholar 

  62. Schultz RA, Okubo CH, Fossen H (2010) Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone. Geophys Res Lett 37(22):1–5. doi:10.1029/2010GL044909

    Article  Google Scholar 

  63. Sternlof KR, Rudnicki JW, Pollard DD (2005) Anticrack inclusion model for compaction bands in sandstone. J Geophys Res 110(B11):B11403. doi:10.1029/2005JB003764

    Article  Google Scholar 

  64. Tembe S, Vajdova V, Wong T, Zhu W (2006) Initiation and propagation of strain localization in circumferentially notched samples of two porous sandstones. J Geophys Res 111(B2):B02409. doi:10.1029/2005JB003611

    Article  Google Scholar 

  65. Tembe S, Baud P, Wong T (2008) Stress conditions for the propagation of discrete compaction bands in porous sandstone. J Geophys Res 113(B9):B09409. doi:10.1029/2007JB005439

    Article  Google Scholar 

  66. Townend E, Thompson BD, Benson PM, Meredith PG, Baud P, Young RP (2008) Imaging compaction band propagation in Diemelstadt sandstone using acoustic emission locations. Geophys Res Lett 35(15):1–5. doi:10.1029/2008GL034723

    Article  Google Scholar 

  67. Vajdova V, Wong TF (2003) Incremental propagation of discrete compaction bands: acoustic emission and microstructural observations on circumferentially notched samples of Bentheim. Geophys Res Lett 30(14):1775–1778. doi:10.1029/2003GL017750

    Article  Google Scholar 

  68. Wang B, Chen Y, Wong T (2008) A discrete element model for the development of compaction localization in granular rock. J Geophys Res 113(B3):B03202. doi:10.1029/2006JB004501

    Article  Google Scholar 

  69. Wang K, Sun W (2016) A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.02.020

    MathSciNet  Google Scholar 

  70. Wang Y-H, Leung S-C (2008) A particulate-scale investigation of cemented sand behavior. Can Geotech J 45(1):29–44. doi:10.1139/T07-070

    Article  Google Scholar 

  71. Wong T, Szeto H, Zhang J (1992) Effect of loading path and porosity on the failure mode of porous rocks. Appl Mech Rev 45(8):281–293. doi:10.1115/1.3119759

    Article  Google Scholar 

  72. Wong T-F, David C, Zhu W (1997) The transition from brittle faulting to cataclasic flow in porous sandstones: mechanical deformation. J Geophys Res 102(B2):3009–3025

    Article  Google Scholar 

  73. Wong TF, Baud P (1999) Mechanical compaction of porous sandstone. Oil Gas Sci Technol 54(6):715–727. doi:10.2516/ogst:1999061

    Article  Google Scholar 

  74. Wong TF, Baud P, Klein E (2001) Localized failure modes in a compactant porous rock. Geophys Res Lett 28(13):2521–2524. doi:10.1029/2001GL012960

    Article  Google Scholar 

  75. Zhang J, Wong T-F, Davis DM (1990) Micromechanics of pressure-induced grain crushing in porous rocks. J Geophys Res 95(B1):341. doi:10.1029/JB095iB01p00341

    Article  Google Scholar 

  76. Zhao J, Guo N (2015) The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 65(8):642–656. doi:10.1680/geot.14.P.184

    Article  Google Scholar 

  77. Zheng Z, Sun WC, Fish J (2016) Micropolar effect on the cataclastic flow and brittle–ductile transition in high-porosity rocks. J Geophys Res B Solid Earth 121(3):1425–1440. doi:10.1002/2015JB012179

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Research Grants Council of Hong Kong through a Theme-based Research Project (No. T22-603/15N) and a Collaborative Research Fund project (Grant No. C6012-15G) and by Natural Science Foundation of China under Project No. 51679207. The authors are also grateful for Prof. Teng-fong Wong of CUHK and Dr. WaiChing Sun of Columbia University for useful discussion on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Guo, N. & Zhao, J. Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotech. 13, 575–599 (2018). https://doi.org/10.1007/s11440-017-0560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0560-2

Keywords

Navigation