Skip to main content
Log in

Failure modes and bearing capacity of strip footings on soft ground reinforced by floating stone columns

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study evaluates the failure modes and the bearing capacity of soft ground reinforced by a group of floating stone columns. A finite difference method was adopted to analyze the performance of reinforced ground under strip footings subjected to a vertical load. The investigation was carried out by varying the aspect ratio of the reinforced zone, the area replacement ratio, and the surface surcharge. General shear failure of the reinforced ground was investigated numerically without the surcharge. The results show the existence of an effective length of the columns for the bearing capacity factors N c and N γ. When certain surcharge was applied, the failure mode of the reinforced ground changed from the general shear failure to the block failure. The aspect ratio of the reinforced zone and the area replacement ratio also contributed to this failure mode transition. A counterintuitive trend of the bearing capacity factor N q can be justified with a shift in the critical failure mode. An upper-bound limit method based on the general shear failure mode was presented, and the results agree well with those of the previous studies of reinforced ground. Equivalent properties based on the area-weighted average of the stone columns and clay parameters were used to convert the individual column model to an equivalent area model. The numerical model produced reasonable equivalent properties. Finally, a theoretical method based on the comparison of the analytical equations for different failure modes was developed for engineering design. Good agreement was found between the theoretical and numerical results for the critical failure mode and its corresponding bearing capacity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

μ :

Posison’s ratio

η :

Area replacement ratio

φ s :

Friction angle of soil

φ c,:

Friction angle of columns

φ eq :

Equivalent friction angle of reinforced zone

φ *eq :

Equivalent friction angle of reinforced zone

γ s :

Unit weight of soil

γ c :

Unit weight of columns

γ eq :

Equivalent unit weight of reinforced zone

q u :

Bearing capacity of the footings

N c, N q, N γ :

Bearing capacity factors of the ground

E :

Modulus of elasticity

L/B :

Length of the columns/width of the footing

q :

Surcharge on the ground

c u, c, c s :

Cohesion of soil

c c :

Cohesion of columns

c eq :

Equivalent cohesion of reinforced zone

n :

Stress concentration ratio

L e :

Effective length of the columns

q cri :

Critical surcharge

q u,block :

Bearing capacity at block failure

N q,block :

Bearing capacity factor at block failure

Q base :

Base resistance of the reinforced ground

Q side :

Side friction of the reinforced ground

N c,s :

Bearing capacity factor for clay

c a :

Undrained columns–soil adhesion

d c :

Depth factor

References

  1. Aboshi H, Ichimoto E, Enoki M, Harada K (1979) The compozer—a method to improve characteristics of soft clays by inclusion of large diameter sand columns. In: Proceedings of the international conference on soil reinforcement: reinforced earth and other techniques, Paris

  2. Abusharar SW, Han J (2011) Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay. Eng Geol 120(1–4):103–110. doi:10.1016/j.enggeo.2011.04.002

    Article  Google Scholar 

  3. Ambily A, Gandhi SR (2007) Behavior of stone columns based on experimental and FEM analysis. J Geotech Geoenviron Eng 133(4):405–415

    Article  Google Scholar 

  4. Bae WS, Shin BW, An BC, Kim JS (2002) Behaviors of foundation system improved with stone columns. In: The twelfth international offshore and polar engineering conference. International Society of Offshore and Polar Engineers, pp 675–678

  5. Barksdale RD, Bachus RC (1983) Design and construction of stone columns. Report No. FHWA/RD, 83/026, Federal Highway Administration, Washington DC

  6. Black J, Sivakumar V, Madhav M, Hamill G (2007) Reinforced stone columns in weak deposits: laboratory model study. J Geotech Geoenviron Eng 133(9):1154–1161

    Article  Google Scholar 

  7. Black J, Sivakumar V, Bell A (2011) The settlement performance of stone column foundations. Géotechnique 61(11):909–922

    Article  Google Scholar 

  8. Bouassida M, Hadhri T (1995) Extreme load of soils reinforced by columns the case of insolated column. Soils Found 35(1):21–35

    Article  Google Scholar 

  9. Bouassida M, Jellali B, Lyamin A (2015) Ultimate bearing capacity of a strip footing on ground reinforced by a trench. Int J Geomech 15(3):06014021. doi:10.1061/(asce)gm.1943-5622.0000418

    Article  Google Scholar 

  10. Bransby F, Randolph M (1999) The effect of embedment depth on the undrained response of skirted foundations to combined loading. Soils Found 39(4):19–33

    Article  Google Scholar 

  11. Brauns J (1978) Die anfangstraglast von schottersaulen im bindigen untergrund. Die Bautechnik 55(8):263–271

    Google Scholar 

  12. Castro J (2014) Numerical modelling of stone columns beneath a rigid footing. Comput Geotech 60:77–87

    Article  Google Scholar 

  13. Castro J (2016) An analytical solution for the settlement of stone columns beneath rigid footings. Acta Geotech 11(2):309–324

    Article  Google Scholar 

  14. Castro J, Sagaseta C (2009) Consolidation around stone columns. Influence of column deformation. Int J Numer Anal Meth Geomech 33(7):851–877

    Article  MATH  Google Scholar 

  15. Castro J, Karstunen M, Sivasithamparam N (2014) Influence of stone column installation on settlement reduction. Comput Geotech 59:87–97

    Article  Google Scholar 

  16. Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique 43(3):443–456

    Article  Google Scholar 

  17. Duncan J, Brandon T, Jian W, Park Y, Griffith T, Corton J, Ryan E (2007) Densities and friction angles of granular materials with standard gradations 21b and #57. Rep CPGR 45, Center for Geotechnical Practice and Research, Viriginia Polytechnic Institute, Blacksburg, VA

  18. Edwards DH, Zdravkovic L, Potts DM (2005) Depth factors for undrained bearing capacity. Geotechnique 55(10):755–758. doi:10.1680/geot.2005.55.10.755

    Article  Google Scholar 

  19. Enoki M, Yagi N, Yatabe R, Ichimoto E (1991) Shearing characteristic of composite ground and its application to stability analysis. Deep Found Improv Des Constr Test ASTM STP 1089:19–31

    Google Scholar 

  20. Etezad M, Hanna AM, Ayadat T (2014) Bearing capacity of a group of stone columns in soft soil. Int J Geomech 15(2):04014043

    Article  Google Scholar 

  21. Fattah MY, Shlash KT, Al-Waily MJM (2011) Stress concentration ratio of model stone columns in soft clays. Geotech Test J 34(1):1

    Google Scholar 

  22. Greenwood DA (1970) Mechanical improvement of soils below ground surface. In: Proceedings conference on ground engineering. Institution of Civil Engineers, London, pp 11–22

  23. Griffiths D (1982) Computation of bearing capacity factors using finite elements. Geotechnique 32(3):195–202

    Article  Google Scholar 

  24. Han J (2014) Recent research and development of ground column technologies. Proc ICE Ground Improv 168(4):246–264

    Article  Google Scholar 

  25. Han J, Ye SL (2001) Simplified method for consolidation rate of stone column reinforced foundation. J Geotech Geoenviron Eng 127(7):597–603. doi:10.1061/(ASCE)1090-0241(2001)127:7(597)

    Article  Google Scholar 

  26. Han J, Ye SL (2002) A theoretical solution for consolidation rates of stone column-reinforced foundations accounting for smear and well resistance effects. Int J Geomech 2(2):135–151. doi:10.1061/(ASCE)1532-3641(2002)2:2(135)

    Article  Google Scholar 

  27. Han J, Parsons RJ, Sheth RA, Huang J (2005) Factors of safety against deep-seated failure of embankments over deep mixed columns. In: Proceedings of deep mixing 2005 conference, vol 1, pp 231–236

  28. Hanna AM, Etezad M, Ayadat T (2013) Mode of failure of a group of stone columns in soft soil. Int J Geomech 13(1):87–96. doi:10.1061/(asce)gm.1943-5622.0000175

    Article  Google Scholar 

  29. Hansen JB (1970) A revised and extended formula for bearing capacity. Dan Geotechn Inst Cph Bull 28:5–11

    Google Scholar 

  30. Hu W (1995) Physical modelling of group behaviour of stone column foundations. Ph.D. dissertation, University of Glasgow, Glasgow, UK

  31. Hughes JMO, Withers NJ (1974) Reinforcing of soft cohesive soils with stone columns. Ground Eng 7(3):42–49

    Google Scholar 

  32. Hughes JMO, Withers NJ, Greenwood DA (1975) A field trial of the reinforcing effect of a stone column in soil. Geotechnique 25(1):31–44

    Article  Google Scholar 

  33. Itasca Consulting Group, Inc. (2006) FLAC3D – Fast Lagrangian Analysis of Continua in 3 Dimensions, Ver. 3.1, User’s Manual. Minneapolis, Itasca

  34. Juran I, Guermazi A (1988) Settlement response of soft soils reinforced by compacted sand columns. J Geotechn Eng 114(8):930–943

    Article  Google Scholar 

  35. Killeen MM, McCabe BA (2014) Settlement performance of pad footings on soft clay supported by stone columns: a numerical study. Soils Found 54(4):760–776

    Article  Google Scholar 

  36. Ladd CC (1964) Stress-strain modulus of clay in undrained shear. J Soil Mech Found Div 90(5):103–132

    Google Scholar 

  37. Lee K, Randolph M, Cassidy M (2013) Bearing capacity on sand overlying clay soils: a simplified conceptual model. Géotechnique 63(15):1285–1297

    Article  Google Scholar 

  38. Madhav MR, Vitkar PP (1978) Strip footing on weak clay stabilized with a granular trench or pile. Can Geotech J 15(4):605–609

    Article  Google Scholar 

  39. McCabe B (2009) A review of field performance of stone columns on soft soils. In: Proceedings of ICE geotechnical engineering

  40. McKelvey D, Sivakumar V, Bell A, Graham J (2004) Modelling vibrated stone columns in soft clay. Proc ICE Geotech Eng 157(3):137–149

    Article  Google Scholar 

  41. Priebe HJ (1995) The design of vibro replacement. Ground Eng 28(10):31

    Google Scholar 

  42. Salgado R, Lyamin AV, Sloan SW, Yu HS (2004) Two- and three-dimensional bearing capacity of foundations in clay. Geotechnique 54(5):297–306. doi:10.1680/geot.54.5.297.46720

    Article  Google Scholar 

  43. Sexton B, McCabe B (2013) Numerical modelling of the improvements to primary and creep settlements offered by granular columns. Acta Geotech 8(4):447–464

    Article  Google Scholar 

  44. Sexton BG, McCabe BA, Castro J (2014) Appraising stone column settlement prediction methods using finite element analyses. Acta Geotech 9(6):993–1011

    Article  Google Scholar 

  45. Shahu JT, Reddy YR (2012) Clayey soil reinforced with stone column group: model tests and analyses. J Geotech Geoenviron Eng 137(12):1265–1274. doi:10.1061/(ASCE)GT.1943-5606.0000552

    Article  Google Scholar 

  46. Skempton AW (1951) The bearing capacity of clays. Proc Build Res Congr 1:180–189

    Google Scholar 

  47. Skempton AW (1959) Cast in situ bored piles in London clay. Geotechnique 9(4):153–173

    Article  Google Scholar 

  48. Stuedlein AW, Holtz RD (2011) Analysis of footing load tests on aggregate pier reinforced clay. J Geotech Geoenviron Eng 138(9):1091–1103

    Article  Google Scholar 

  49. Stuedlein AW, Holtz RD (2013) Bearing capacity of spread footings on aggregate pier reinforced clay. J Geotech Geoenviron Eng 139(1):49–58. doi:10.1061/(ASCE)GT.1943-5606.0000748

    Article  Google Scholar 

  50. Tan SA, Tjahyono S, Oo K (2008) Simplified plane-strain modeling of stone-column reinforced ground. J Geotech Geoenviron Eng 134(2):185–194

    Article  Google Scholar 

  51. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  52. Watts K, Johnson D, Wood L, Saadi A (2000) An instrumented trial of vibro ground treatment supporting strip foundations in a variable fill. Geotechnique 50(6):699–708

    Article  Google Scholar 

  53. White DJ, Pham HT, Hoevelkamp KK (2007) Support mechanisms of rammed aggregate piers. I: experimental results. J Geotech Geoenviron Eng 133(12):1503–1511

    Article  Google Scholar 

  54. Wood DM, Hu W, Nash DFT (2000) Group effects in stone column foundations: model tests. Geotechnique 50(6):689–698

    Article  Google Scholar 

  55. Zhang Z, Han J, Ye G (2014) Numerical investigation on factors for deep-seated slope stability of stone column-supported embankments over soft clay. Eng Geol 168:104–113

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the National Natural Science Foundation of China (Grant No. 51378345). The authors appreciate the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng.

Appendix

Appendix

The incremental external work and internal energy dissipation can be calculated as follows.

1.1 Velocity field

The velocity hodographs are shown in Fig. 10b: v p is the velocity of the triangular wedge; the velocity v 0 at the start point B of the log-spiral curve and the relative velocity v 0p of the triangular block and the log-spiral region are determined from the velocity hodograph as follows.

$$ v_{0} = \frac{{v_{\text{p}} \cos \left( {\alpha - \varphi_{\text{eq}} } \right)}}{{\cos \varphi_{\text{eq}} }} $$
(18)
$$ v_{{0{\text{p}}}} = \frac{{v_{\text{p}} \sin \alpha }}{{\cos \varphi_{\text{eq}} }} = \frac{{v_{0} \sin \alpha }}{{\cos \left( {\alpha - \varphi_{\text{eq}} } \right)}} $$
(19)

And the velocities v 1 and v 2 in the Tresca material are determined as follows

$$ v_{1} = v_{2} = v_{0} \times {\text{e}}^{{(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} $$
(20)

1.2 Geometry

The lengths of l AB , l AC , l AD , and l DE (Fig. 10a) are given as follows.

$$ l_{AB} = \frac{B}{2\cos \alpha } $$
(21)
$$ l_{AC} = l_{AD} = l_{AB} {\text{e}}^{{(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} $$
(22)
$$ l_{DE} = \frac{{l_{AD} }}{\sin \beta }\sin \left( {\frac{\pi }{2} - \beta } \right) = l_{AB} \times {\text{e}}^{{(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} \times \cot \beta $$
(23)

1.3 Incremental internal energy dissipation

The incremental internal energy dissipation along the different velocity discontinuities can be calculated as follows.

  1. 1.

    The energy dissipation along the discontinuity surface AB

    $$ D_{{{\text{c}}1}} = c_{\text{eq}} \times \cos \varphi_{\text{eq}} \times v_{{0{\text{p}}}} \times l_{AB} $$
    (24)
  2. 2.

    The energy dissipation in the log-spiral shear zone is the summation of the discontinuity surface BC and the spiral surface.

    $$ D_{{{\text{c}}2}} = 2c_{\text{eq}} \int_{0}^{\pi /2 - \alpha } {r \times v_{0} {\text{d}}\theta } = c_{\text{eq}} \times l_{AB} \times v_{0} \times \left( {{\text{e}}^{{2(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} - 1} \right) \times \cot \varphi_{\text{eq}} $$
    (25)
  3. 3.

    The energy dissipation in the radial shear zone is the summation of the discontinuity surface CD and the circular arc surface.

    $$ D_{{{\text{c}}3}} = 2c_{\text{s}} \int_{0}^{\beta } {v_{1} \times l_{AC} {\text{d}}\theta } = 2c_{\text{s}} \times v_{0} \times l_{AB} \times {\text{e}}^{{2(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} \times \beta $$
    (26)
  4. 4.

    The energy dissipation along the discontinuity surface DE.

    $$ D_{{{\text{c}}_{4} }} = c_{\text{s}} \times v_{2} \times l_{DE} = c_{\text{s}} \times v_{0} \times l_{AB} \times {\text{e}}^{{2(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} \times \cot \beta $$
    (27)

The total incremental energy dissipation is the summation of these four parts

$$ D_{\text{total}} = \sum\limits_{i = 1}^{4} {D_{{{\text{c}}i}} } $$
(28)

1.4 Incremental external work

The incremental external work is provided by the self-weight of soil, vertical load, and surcharge.

  1. 1.

    The incremental external work due to the self-weight of the triangular wedge OAB is

    $$ W_{\gamma 1} = \frac{1}{2} \times \frac{{\gamma_{\text{eq}} }}{{\gamma_{\text{s}} }} \times l_{AB}^{2} \times \sin \alpha \times \cos \alpha \times v_{0} \times \frac{{\cos \varphi_{\text{eq}} }}{{\cos \left( {\alpha - \varphi_{\text{eq}} } \right)}} $$
    (29)
  2. 2.

    The incremental external work due to the self-weight of the log-spiral shear zone ABC is

    $$ \begin{aligned} W_{\gamma 2} = & \int_{0}^{{\left( {\frac{\pi }{2} - \alpha } \right)}} {\frac{1}{2}} \times \frac{{\gamma_{\text{eq}} }}{{\gamma_{\text{s}} }} \times l_{AB}^{2} \times v_{0} \times \cos \left( {\alpha + \theta } \right) \times {\text{e}}^{{3 \times \theta \times \tan \varphi_{\text{eq}} }} {\text{d}}\theta \\ = & \frac{1}{2} \times \frac{{\gamma_{\text{eq}} }}{{\gamma_{\text{s}} }} \times l_{AB}^{2} \times v_{0} \frac{{{\text{e}}^{{3 \times \left( {\frac{\pi }{2} - \alpha } \right) \times \tan \varphi_{\text{eq}} }} - \sin \alpha - 3 \times \cos \alpha \times \tan \varphi_{\text{eq}} }}{{9 \times \tan^{2} \varphi_{\text{eq}} + 1}} \\ \end{aligned} $$
    (30)
  3. 3.

    The incremental external work due to the self-weight of the arc shear zone ACD is

    $$ W_{\gamma 3} = - \int_{0}^{\beta } {\frac{1}{2} \times \gamma_{\text{s}} \times l_{AC}^{2} \times v_{2} \times \sin \theta {\text{d}}\theta } = \frac{1}{2} \times \gamma_{\text{s}} \times l_{AB}^{2} \times v_{0} \times {\text{e}}^{{3 \times \left( {\frac{\pi }{2} - \alpha } \right) \times \tan \varphi_{\text{eq}} }} \times \left( {\cos \beta - 1} \right) $$
    (31)
  4. 4.

    The incremental external work due to the self-weight of the passive Rankine zone ADE is

    $$ W_{\gamma 4} = - \frac{1}{2} \times \gamma_{s} \times l_{AD} \times l_{DE} \times v_{2} \times \sin \beta = - \frac{1}{2} \times \gamma_{\text{s}} \times r_{0}^{2} \times v_{0} \times {\text{e}}^{{3 \times \left( {\frac{\pi }{2} - \alpha } \right) \times \tan \varphi_{\text{eq}} }} \times \cos \beta $$
    (32)
  5. 5.

    The incremental external work due to the vertical load is

    $$ W_{\text{f}} = q_{\text{u}} \times \frac{B}{2} \times v_{\text{p}} $$
    (33)
  6. 6.

    The incremental external work due to the surcharge is

    $$ W_{\text{q}} = q \times l_{AE} \times v_{2} \times \sin \beta = q \times l_{AB} \times v_{0} \times {\text{e}}^{{2(\pi /2 - \alpha )\tan \varphi_{\text{eq}} }} $$
    (34)

The total incremental external work is the summation of these six contributions from Eqs. (32)–(35).

$$ W_{\text{total}} = W_{\text{f}} - W_{\text{q}} + \sum\limits_{i = 1}^{4} {W_{\gamma i} } $$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Diao, Y., Zheng, G. et al. Failure modes and bearing capacity of strip footings on soft ground reinforced by floating stone columns. Acta Geotech. 12, 1089–1103 (2017). https://doi.org/10.1007/s11440-017-0535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0535-3

Keywords

Navigation