Skip to main content
Log in

Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using X-ray micro-CT

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Discontinuities in brittle geomaterials, including concrete and rock, represent localized zones of weakness and enhanced hydraulic transmissivity that often control the hydromechanical behavior of the medium. The shearing of discontinuities and the resulting morphological changes can significantly alter this behavior. In this work, a procedure is developed to characterize sheared discontinuity replicas as a function of the applied normal load using X-ray micro-computed tomography (micro-CT) imagery. A specimen design and testing procedure that facilitates CT scanning is presented along with an image processing procedure to quantify the morphological changes in the specimens. Subsequently, the results of direct shear testing and image-based measurements of mean fracture aperture, surface area, median effective aperture, and the preferential orientation of fracture void space are presented and discussed. Application of the procedure developed herein yields characteristics of the morphology of sheared discontinuities that were previously not possible to obtain or that were time consuming to collect with destructive sectioning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. All machining was performed by the Mechanical and Industrial Engineering Machine shop at the University of Toronto.

  2. http://www.smooth-on.com.

  3. http://fiji.sc/Fiji.

  4. http://bonej.org/.

  5. www.geogroup.utoronto.ca.

References

  1. Alshibli K, Reed AH (eds) (2010) Advances in computed tomography for geomaterials: GeoX 2010. ISTE, London

    Google Scholar 

  2. Auradou H, Drazer G, Boschan A, Hulin JP, Koplik J (2006) Flow channeling in a single fracture induced by shear displacement. Geothermics 35(5–6):576–588

    Article  Google Scholar 

  3. Auradou H, Drazer G, Hulin JP, Koplik J (2005) Permeability anisotropy induced by the shear displacement of rough fracture walls. Water Resour Res 41(9):W09423

    Google Scholar 

  4. Başağaoğlu H, Meakin P, Succi S, Redden GR, Ginn TR (2008) Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels. Phys Rev E 77(3):031405-1–031405-10

    Google Scholar 

  5. Bandis S, Lumsden AC, Barton NR (1981) Experimental studies of scale effects on the shear behaviour of rock joints. Int J Rock Mech Min Sci Geomech Abstr 18(1):1–21

    Article  Google Scholar 

  6. Barton NR (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287–332

    Article  MathSciNet  Google Scholar 

  7. Barton NR, Bandis S (1990) Review of predictive capabilities of JRC-JCS model in engineering practice. In: Rock joints. Proceedings of the international symposium on rock joints. A. A. Balkema, Loen, Norway, pp 603–610

  8. Barton NR, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22(3):121–140

    Article  Google Scholar 

  9. Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8–12):861–884

    Article  Google Scholar 

  10. Boulon MJ, Selvadurai APS, Benjelloun H, Feuga B (1993) Influence of rock joint degradation on hydraulic conductivity. Int J Rock Mech Min Sci Geomech Abstr 30(7):1311–1317

    Article  Google Scholar 

  11. Boutt DF, Grasselli G, Fredrich JT, Cook BK, Williams JR (2006) Trapping zones: the effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys Res Lett 33(21):L21402–L21406

    Article  Google Scholar 

  12. Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92(B2):1337–1347

    Article  Google Scholar 

  13. Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res Solid Earth Planets 90(B14):2575–2582

    Article  Google Scholar 

  14. Buzug T (2008) Computed tomography: from photon statistics to modern cone-beam CT. Springer, Berlin

    Google Scholar 

  15. Christe P, Turberg P, Labiouse V, Meuli R, Parriaux A (2011) An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples. Eng Geol 117(34):180–188

    Article  Google Scholar 

  16. Christe PG (2009) Geological characterization of cataclastic rock samples using medical X-ray computerized tomography—towards a better geotechnical description. Ph.D. thesis, EPFL

  17. Cnudde V, Boone M, Dewanckele J, Dierick M, Van Hoorebeke L, Jacobs P (2011) 3D characterization of sandstone by means of X-ray computed tomography. Geosphere 7(1):54–61

    Article  Google Scholar 

  18. Deere DU, Miller RP (1966) Engineering classification and index properties for intact rocks. Tech Rep AFWL-TR-65-116, U.S. Air Force Weapons Laboratory Kirtland Air Force Base, New Mexico

  19. Desrues J, Viggiani G, Besuelle P (eds) (2006) Advances in X-ray tomography for geomaterials: Geox 2006. ISTE, London

    Google Scholar 

  20. Doube M, Klosowski MM, Arganda-Carreras I, Cordelires FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079

    Article  Google Scholar 

  21. Du Y, Aydin A (1995) Shear fracture patterns and connectivity at geometric complexities along strike-slip faults. J Geophys Res 100(B9):18093–18102

    Article  Google Scholar 

  22. Eker E, Akin S (2006) Lattice Boltzmann simulation of fluid flow in synthetic fractures. Transp Porous Media 65(3):363–384

    Article  Google Scholar 

  23. Fishman YA (1990) Failure mechanism and shear strength of joint wall asperities. In: Barton N, Stephansson O (eds) Rock Joints. Proceedings of the international symposium on rock joints. A. A. Balkema, Rotterdam, Leon, Norway, pp 627–633

  24. Gale JE (1987) Comparison of coupled fracture deformation and fluid flow models with direct measurement of fracture pore structure and stress-flow properties. In: Proceedings of the 28th US rock mechanics symposium. A. A. Balkema, Brookfield, VT, pp 1213–1222

  25. Gentier S, Billaux D, Vliet L (1989) Laboratory testing of the voids of a fracture. Rock Mech Rock Eng 22(2):149–157

    Article  Google Scholar 

  26. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44(1):1–13

    Article  Google Scholar 

  27. Ghazvinian AH, Azinfar MJ (2012) Importance of tensile strength on the shear behavior of discontinuities. Rock Mech Rock Eng 45(3):349–359

    Article  Google Scholar 

  28. Glasbey CA (1993) An analysis of histogram-based thresholding algorithms. CVGIP Graph Models Image Process 55(6):532–537

    Article  Google Scholar 

  29. Grasselli G, Egger P (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci 40(1):25–40

    Article  Google Scholar 

  30. Haberfield CM, Johnston IW (1994) A mechanistically-based model for rough rock joints. Int J Rock Mech Min Sci Geomech Abstr 31(4):279–292

    Article  Google Scholar 

  31. Hakami E, Larsson E (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech Min Sci Geomech Abstr 33(4):395–404

    Article  Google Scholar 

  32. Hans J, Boulon M (2003) A new device for investigating the hydro-mechanical properties of rock joints. Int J Numer Anal Methods Geomech 27(6):513–548

    Article  Google Scholar 

  33. Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations. A. A. Balkema, Rotterdam

    Google Scholar 

  34. Hseih J (2009) Computed tomography—principles, design, artifacts and recent advances. SPIE Press, Bellingham

    Google Scholar 

  35. Huang LK, Wang MJJ (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recogn 28(1):41–51

    Article  Google Scholar 

  36. Huang TH, Chang CS, Chao CY (2002) Experimental and mathematical modeling for fracture of rock joint with regular asperities. Eng Fract Mech 69(17):1977–1996

    Article  Google Scholar 

  37. Hudson JA, Harrison JP (2000) Engineering rock mechanics. Elsevier, Oxford

    Google Scholar 

  38. Iwai K (1976) Fundamental studies of the fluid flow through a single fracture. Ph.D. thesis, University of California, Berkeley

  39. Jaeger JC (1971) Friction of rocks and stability of rock slopes. Geotechnique 21(2):97–134

    Article  Google Scholar 

  40. Jafari MK, Amini Hosseini K (2003) Evaluation of shear strength of rock joints subjected to cyclic loading. Soil Dyn Earthq Eng 23(7):619–630

    Article  Google Scholar 

  41. Johns RA, Steude JS, Castanier LM, Roberts PV (1993) Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography. J Geophys Res 98(B2):1889–1900

    Article  Google Scholar 

  42. Kak AC, Slaney M (1987) Principles of computerized tomographic imaging. IEEE Press, New York

    Google Scholar 

  43. Karpyn ZT, Alajmi A, Radaelli F, Halleck PM, Grader AS (2009) X-ray CT and hydraulic evidence for a relationship between fracture conductivity and adjacent matrix porosity. Eng Geol 103(3–4):139–145

    Article  Google Scholar 

  44. Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27(4):381–400

    Article  Google Scholar 

  45. Ketcham RA, Slottke DT, Sharp JM (2010) Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography. Geosphere 6(5):499–514

    Article  Google Scholar 

  46. Kulatilake PHSW, Shou G, Huang TH, Morgan RM (1995) New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abstr 32(7):673–697

    Article  Google Scholar 

  47. Ladanyi B, Archambault G (1970) Simulation of the shear behaviour of a jointed rock mass. In: Proceedings of the 11th symposium on rock mechanics: theory and practice. American Institute of Mining Engineers, Berkeley, CA, pp 105–125

  48. Lam T, Johnston I (1989) Shear behavior of regular triangular concrete/rock joints—evaluation. J Geotech Eng 115(5):728–740

    Article  Google Scholar 

  49. Lanaro F (2000) A random field model for surface roughness and aperture of rock fractures. Int J Rock Mech Min Sci 37(8):1195–1210

    Article  Google Scholar 

  50. Landis EN (2006) X-ray tomography as a tool for micromechanical investigations of cement and mortar. Geox 2006: advances in X-ray tomography for geomaterials. ISTE, London, pp 79–93

    Google Scholar 

  51. Li C, Tam P (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recogn Lett 19(8):771–776

    Article  MATH  Google Scholar 

  52. Long JCS, Witherspoon PA (1985) The relationship of the degree of interconnection to permeability in fracture networks. J Geophys Res 90(B4):3087–3098

    Article  Google Scholar 

  53. Lorensen, WE, Cline, HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques SIGGRAPH ’87. ACM, New York, NY, USA, pp 163–169. doi:10.1145/37401.37422.

  54. Louis L, Baud P, Wong TF (2007) Characterization of pore-space heterogeneity in sandstone by X-ray computed tomography. Geol Soc Lond Spec Publ 284(1):127–146

    Article  Google Scholar 

  55. Makurat, A, Barton, NR, Rad, NS (1990) Joint conductivity variation due to normal and shear deformation. In: Barton N, Stephansson O (eds) Rock joints. Proceedings of the international symposium on rock joints. A. A. Balkema, Rotterdam, Loen, Norway, pp 535–540

  56. Nasseri MHB, Rezanezhad F, Young RP (2011) Analysis of fracture damage zone in anisotropic granitic rock using 3d X-ray CT scanning techniques. Int J Fract 168(1):1–13

    Article  Google Scholar 

  57. Odling NE, Gillespie P, Bourgine B, Castaing C, Chiles JP, Christensen NP, Fillion E, Genter A, Olsen C, Thrane L, Trice R, Aarseth E, Walsh JJ, Watterson J (1999) Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Petrol Geosci 5(4):373–384

    Article  Google Scholar 

  58. Olsson WA, Brown SR (1993) Hydromechanical response of a fracture undergoing compression and shear. Int J Rock Mech Min Sci Geomech Abstr 30(7):845–851

    Article  Google Scholar 

  59. Otani J, Obara Y (eds) (2004) X-ray CT for geomaterials: soils, concrete, rocks: Geox 2003. A. A. Balkema, Lisse

  60. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  61. Palmstrom A (2001) Measurement and characterization of rock mass jointing. In: Sharma KR, Saxena VM (eds) In-situ characterization of rocks. A. A Balkema, Rotterdam, pp 49–97

    Google Scholar 

  62. Patton, FD (1966) Multiple modes of shear failure in rock. In: Proceeding of the1st congress of international society of rock mechanics, vol 1. Lisbon, Portugal, pp 509–513

  63. Pera VE, Heffer EL, Siebold H, Schütz O, Heywang-Köbrunner S, Götz L, Heinig A, Fantini S (2003) Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors. J Biomed Opt 8(3):517–524

    Article  Google Scholar 

  64. Pereira JP, de Freitas MH (1993) Mechanisms of shear failure in artificial fractures of sandstone and their implication for models of hydromechanical coupling. Rock Mech Rock Eng 26(3):195–214

    Article  Google Scholar 

  65. Pratt WK (2007) Digital image processing: PIKS scientific inside, 4th edn. Wiley, New York

    Book  Google Scholar 

  66. Pyrak-Nolte LJ, Montemagno CD, Nolte DD (1997) Volumetric imaging of aperture distributions in connected fracture networks. Geophys Res Lett 24(18):2343–2346

    Article  Google Scholar 

  67. Pyrak-Nolte LJ, Myer L, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock. In: Proceedings of the 6th international congress on rock mechanics. A. A. Balkema, Brookfireld, VT, pp 225–231

  68. Re F, Scavia C (1999) Determination of contact areas in rock joints by X-ray computer tomography. Int J Rock Mech Min Sci 36(7):883–890

    Article  Google Scholar 

  69. Roerdink JB, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41(1):187–228

    MATH  MathSciNet  Google Scholar 

  70. Russ JC (2007) The image processing handbook, 5th edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  71. Shanbhag A (1994) Utilization of information measure as a means of image thresholding. CVGIP Graph Models Image Process 56(5):414–419

    Article  MathSciNet  Google Scholar 

  72. Sharifzadeh M, Mitani Y, Esaki T (2008) Rock joint surfaces measurement and analysis of aperture distribution under different normal and shear loading using GIS. Rock Mech Rock Eng 41(2):299–323

    Article  Google Scholar 

  73. Sheorey PR (1997) Empirical rock failure criteria. A. A. Balkema, Rotterdam

    Google Scholar 

  74. Smith S (1997) The scientist and engineer’s guide to digital signal processing. California Technical Publishing, San Diego

    Google Scholar 

  75. Stock S (2009) Micro computed tomography. CRC Press, Boca Raton

    Google Scholar 

  76. Tatone BSA, Grasselli G (2012) Quantitative measurements of fracture aperture and directional roughness from rock cores. Rock Mech Rock Eng 45(4):619–629

    Article  Google Scholar 

  77. Tsang YW (1984) The effect of tortuosity on fluid flow through a single fracture. Water Resour Res 20(9):1209–1215

    Article  Google Scholar 

  78. Tsang YW, Tsang CF (1989) Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium. Water Resour Res 25(9):2076–2080

    Article  Google Scholar 

  79. Vervoot M, Wevers M, Swennen R, Roels S, Van Geet M, Sellars (2004) Recent advances of X-Ray CT and its application for rock material. In: Otani J, Obara Y (eds) X-ray CT for geomaterials; soils, concrete, rocks. A. A. Balkema, Lisse

  80. Vilarrasa V, Koyama T, Neretnieks I, Jing L (2011) Shear-induced flow channels in a single rock fracture and their effect on solute transport. Transp Porous Media 87(2):503–523

    Article  Google Scholar 

  81. Vincent L (1991) Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6):583–598

    Article  Google Scholar 

  82. Yeo IW, de Freitas MH, Zimmerman RW (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35(8):1051–1070

    Article  Google Scholar 

  83. Zandomeneghi D, Voltolini M, Mancini L, Brun F, Dreossi D, Polacci M (2010) Quantitative analysis of X-ray microtomography images of geomaterials: application to volcanic rocks. Geosphere 6(6):793–804

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported through NSERC Discovery Grant 341275 and CFI-LOF Grant 18285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Grasselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatone, B.S.A., Grasselli, G. Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using X-ray micro-CT. Acta Geotech. 10, 31–54 (2015). https://doi.org/10.1007/s11440-014-0320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0320-5

Keywords

Navigation