Skip to main content
Log in

CForBio: a network monitoring Chinese forest biodiversity

  • Review
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

China harbors a rich variety of forest types and forest-associated biodiversity, linked to both historical and contemporary environmental factors. However, being a country with a large population and rapid economic development, its diverse forest is facing unprecedent challenges. The Chinese Forest Biodiversity Network (CForBio) was initiated 12 years ago to study the maintenance of biodiversity in China’s forest ecosystems. In this review, we first summarize research progress in CForBio, and then give suggestions for future research. In the past 12 years, the research based on CForBio mainly focused on local ecological factors, such as environment filtering, biotic interactions and small-scale dispersal limitation. We suggest that future studies in CForBio should (1) continue research on trees, but expand more on insects, birds, mammals, microbes and other organism groups; (2) investigate the effects of widespread defaunation on forest biodiversity, structure and functioning; (3) evaluate the diverse effects of climate change on forest composition, structure and functioning; (4) include new technologies, such as remote sensing, to better monitor and study forest biodiversity change and maintenance.

摘要

中国具有极为丰富的森林类型及森林生物多样性。为了更好地监测与 研究其动态变化与维持机制, 中国森林生物多样性监测网络 (CForBio) 于 2004 年启动建设。然而, CForBio 在过去12 年的研究主要集中在局部因子对 树木群落结构的影响, 如生境过滤、种间关系及局部扩散。因此, 我们建议 CForBio 未来需要: 1) 在坚持对树木群落研究的同时, 进一步开展对其他生物 类群的研究; 2) 研究动物丧失对森林生物多样性、群落结构及功能的影响; 3) 评估气候变化对森林群落组成、结构及功能的影响; 4) 利用遥感等新技术更好 的监测与研究森林生物多样性动态及维持机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pan YD, Birdsey RA, Phillips OL et al (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  2. Anderson-Teixeira KJ, Davies SJ, Bennett AC et al (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Change Biol 21:528–549

    Article  Google Scholar 

  3. Slik JWF, Arroyo-Rodríguez V, Aiba SI et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci USA 112:7472–7477

    Article  Google Scholar 

  4. Beer C, Reichstein M, Tomelleri E et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  Google Scholar 

  5. Pan YD, Birdsey RA, Fang JY et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  Google Scholar 

  6. Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67:325–333

    Article  Google Scholar 

  7. López-Pujol J, Zhang FM, Ge S (2006) Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodivers Conserv 15:3983–4026

    Article  Google Scholar 

  8. Fang JY, Wang XP, Liu YN et al (2012) Multi-scale patterns of forest structure and species composition in relation to climate in northeast China. Ecography 35:1072–1082

    Article  Google Scholar 

  9. Manchester SR, Chen ZD, Lu AM et al (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. J Syst Evol 47:1–42

    Article  Google Scholar 

  10. Tang ZY, Wang ZH, Zheng CY et al (2006) Biodiversity in China’s mountains. Front Ecol Environ 4:347–352

    Article  Google Scholar 

  11. Dinerstein E, Wikramanayake ED (1993) Beyond “hotspots”: how to prioritize investments to conserve biodiversity in the Indo-Pacific region. Conserv Biol 7:53–65

    Article  Google Scholar 

  12. Zhang YX, Song CH (2006) Impacts of afforestation, deforestation, and reforestation on forest cover in China from 1949 to 2003. J Forest 104:383–387

    Google Scholar 

  13. Xu JC (2011) China’s new forests aren’t as green as they seem. Nature 477:371

    Article  Google Scholar 

  14. Ma KP (2015) Biodiversity monitoring in China: from CForBio to Sino BON. Biodivers Sci 23:1–2 (In Chinese)

    Article  Google Scholar 

  15. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  Google Scholar 

  16. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  17. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  Google Scholar 

  18. Lai JS, Mi XC, Ren HB et al (2009) Species-habitat associations change in a subtropical forest of China. J Veg Sci 20:415–423

    Article  Google Scholar 

  19. Zhang LW, Mi XC, Shao HB et al (2011) Strong plant–soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil 347:211–220

    Article  Google Scholar 

  20. Pei NC, Lian JY, Erickson DL et al (2011) Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci. PLoS One 6:e21273

    Article  Google Scholar 

  21. Liu JJ, Yunhong T, Slik JWF (2014) Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecol Manag 330:75–81

    Article  Google Scholar 

  22. Moeslund JE, Arge L, Bøcher PK et al (2013) Topography as a driver of local terrestrial vascular plant diversity patterns. Nord J Bot 31:129–144

    Article  Google Scholar 

  23. Wang ZF, Lian JY, Ye WH et al (2014) The spatial genetic pattern of Castanopsis chinensis in a large forest plot with complex topography. Forest Ecol Manag 318:318–325

    Article  Google Scholar 

  24. Lan GY, Hu YH, Cao M et al (2011) Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. Forest Ecol Manag 262:1507–1513

    Article  Google Scholar 

  25. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  26. Lin G, Stralberg D, Gong G et al (2013) Separating the effects of environment and space on tree species distribution: from population to community. PLoS One 8:e56171

    Article  Google Scholar 

  27. Liu XJ, Swenson NG, Wright SJ et al (2012) Covariation in plant functional traits and soil fertility within two species-rich forests. PLoS One 7:e34767

    Article  Google Scholar 

  28. Yuan ZQ, Gazol A, Wang XG et al (2011) Scale specific determinants of tree diversity in an old growth temperate forest in China. Basic Appl Ecol 12:488–495

    Article  Google Scholar 

  29. Wang X, Comita LS, Hao Z et al (2012) Local-scale drivers of tree survival in a temperate forest. PLoS One 7:e29469

    Article  Google Scholar 

  30. Yuan ZQ, Gazol A, Lin F et al (2013) Soil organic carbon in an old-growth temperate forest: spatial pattern, determinants and bias in its quantification. Geoderma 195:48–55

    Article  Google Scholar 

  31. Yang J, Swenson NG, Zhang GC et al (2015) Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage. Sci Rep 5:12731

    Article  Google Scholar 

  32. Rüger N, Huth A, Hubbell SP et al (2009) Response of recruitment to light availability across a tropical lowland rain forest community. J Ecol 97:1360–1368

    Article  Google Scholar 

  33. Lin F, Comita LS, Wang XG et al (2014) The contribution of understory light availability and biotic neighborhood to seedling survival in secondary versus old-growth temperate forest. Plant Ecol 215:795–807

    Article  Google Scholar 

  34. Du YJ, Mi XC, Ma KP (2012) Comparison of seed rain and seed limitation between community understory and gaps in a subtropical evergreen forest. Acta Oecol 44:11–19

    Article  Google Scholar 

  35. Feng G, Mi XC, Bøcher PK et al (2014) Relative roles of local disturbance, current climate and paleoclimate in determining phylogenetic and functional diversity in Chinese forests. Biogeosciences 11:1361–1370

    Article  Google Scholar 

  36. Zhu Y, Mi XC, Ren HB et al (2010) Density dependence is prevalent in a heterogeneous subtropical forest. Oikos 119:109–119

    Article  Google Scholar 

  37. Piao TF, Comita LS, Jin GZ et al (2013) Density dependence across multiple life stages in a temperate old-growth forest of northeast China. Oecologia 172:207–217

    Article  Google Scholar 

  38. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  39. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den BPJ, Gradwell G (eds) Dynamics of populations. PUDOC, Wageningen, pp 298–312

  40. Luo ZR, Mi XC, Chen XR et al (2012) Density dependence is not very prevalent in a heterogeneous subtropical forest. Oikos 121:1239–1250

    Article  Google Scholar 

  41. Zhang J, Hao ZQ, Sun IF et al (2009) Density dependence on tree survival in an old-growth temperate forest in northeastern China. Ann For Sci 66:1–9

    Google Scholar 

  42. Brooker RW, Maestre FT, Callaway RM et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  43. McIntire EJB, Fajardo A (2014) Facilitation as a ubiquitous driver of biodiversity. New Phytol 201:403–416

    Article  Google Scholar 

  44. Gao C, Shi NN, Liu YX et al (2013) Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol Ecol 22:3403–3414

    Article  Google Scholar 

  45. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  46. Legendre P, Mi XC, Ren HB et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  Google Scholar 

  47. Liu XJ, Swenson NG, Zhang JL et al (2013) The environment and space, not phylogeny, determine trait dispersion in a subtropical forest. Funct Ecol 27:264–272

    Article  Google Scholar 

  48. Li BH, Hao ZQ, Bin Y et al (2012) Seed rain dynamics reveals strong dispersal limitation, different reproductive strategies and responses to climate in a temperate forest in northeast China. J Veg Sci 23:271–279

    Article  Google Scholar 

  49. Du YJ, Mi XC, Liu XJ et al (2009) Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. Forest Ecol Manag 258:1147–1152

    Article  Google Scholar 

  50. Warren-Thomas E, Zou Y, Dong LJ et al (2014) Ground beetle assemblages in Beijing’s new mountain forests. Forest Ecol Manag 334:369–376

    Article  Google Scholar 

  51. Feng G, Svenning JC, Mi XC et al (2014) Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. Forest Ecol Manag 313:188–198

    Article  Google Scholar 

  52. Chen L, Mi XC, Comita LS et al (2010) Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecol Lett 13:695–704

    Article  Google Scholar 

  53. Bai XJ, Queenborough SA, Wang XG et al (2012) Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia 170:755–765

    Article  Google Scholar 

  54. Li L, Huang ZL, Ye WH et al (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos 118:495–502

    Article  Google Scholar 

  55. Shen ZH, Fei SL, Feng JM et al (2012) Geographical patterns of community-based tree species richness in Chinese mountain forests: the effects of contemporary climate and regional history. Ecography 35:1134–1146

    Article  Google Scholar 

  56. Wang XP, Tang ZY, Shen ZH et al (2012) Relative influence of regional species richness vs local climate on local species richness in China’s forests. Ecography 35:1176–1184

    Article  Google Scholar 

  57. Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol 59:225–244

    Article  Google Scholar 

  58. Feng G, Mi XC, Eiserhardt WL et al (2015) Assembly of forest communities across East Asia-insights from phylogenetic community structure and species pool scaling. Sci Rep 5:9337

    Article  Google Scholar 

  59. Maguire DA, Forman RTT (1983) Herb cover effects on tree seedling patterns in a mature hemlock-hardwood forest. Ecology 64:1367–1380

    Article  Google Scholar 

  60. Mölder A, Bernhardt-Römermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? Forest Ecol Manag 256:272–281

    Article  Google Scholar 

  61. Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecol Manag 309:9–27

    Google Scholar 

  62. Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441

    Article  Google Scholar 

  63. Harvey CA, Medina A, Sánchez DM et al (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16:1986–1999

    Article  Google Scholar 

  64. Cesarz S, Fahrenholz N, Migge-Kleian S et al (2007) Earthworm communities in relation to tree diversity in a deciduous forest. Eur J Soil Biol 43:S61–S67

    Article  Google Scholar 

  65. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  Google Scholar 

  66. Pires MM, Galetti M, Donatti CI et al (2014) Reconstructing past ecological networks: the reconfiguration of seed–dispersal interactions after megafaunal extinction. Oecologia 175:1247–1256

    Article  Google Scholar 

  67. Beaune D, Fruth B, Bollache L et al (2013) Doom of the elephant-dependent trees in a Congo tropical forest. Forest Ecol Manag 295:109–117

    Article  Google Scholar 

  68. García D, Martínez D (2012) Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds. Proc R Soc B Biol Sci 279:3106–3113

    Article  Google Scholar 

  69. Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6

    Article  Google Scholar 

  70. Harrison RD, Tan S, Plotkin JB et al (2013) Consequences of defaunation for a tropical tree community. Ecol Lett 16:687–694

    Article  Google Scholar 

  71. Bello C, Galetti M, Pizo MA et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105

    Article  Google Scholar 

  72. Fellowes J, Lau M, Chan B et al (2004) Nature reserves in South China: observations on their role and problems in conserving biodiversity. In: Xie Y, Wang S, Schei P (eds) China’s protected areas. Tsinghua University Press, Beijing, pp 341–355

    Google Scholar 

  73. Elvin M (2008) The retreat of the elephants: an environmental history of China. Yale University Press, New Haven

    Google Scholar 

  74. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    Article  Google Scholar 

  75. Ni J (2011) Impacts of climate change on Chinese ecosystems: key vulnerable regions and potential thresholds. Reg Environ Change 11:49–64

    Article  Google Scholar 

  76. Zhou GY, Houlton BZ, Wang WT et al (2014) Substantial reorganization of China’s tropical and subtropical forests: based on the permanent plots. Glob Change Biol 20:240–250

    Article  Google Scholar 

  77. Enquist BJ, Enquist CAF (2011) Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Glob Change Biol 17:1408–1424

    Article  Google Scholar 

  78. Fauset S, Baker TR, Lewis SL et al (2012) Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett 15:1120–1129

    Article  Google Scholar 

  79. He HS, Hao ZQ, Mladenoff DJ et al (2005) Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. J Biogeogr 32:2043–2056

    Article  Google Scholar 

  80. Lenoir J, Svenning JC (2015) Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38:15–28

    Article  Google Scholar 

  81. Liu ZH, Yang J, Chang Y et al (2012) Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob Change Biol 18:2041–2056

    Article  Google Scholar 

  82. de Groot WJ, Flannigan MD, Cantin AS (2013) Climate change impacts on future boreal fire regimes. Forest Ecol Manag 294:35–44

    Article  Google Scholar 

  83. Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470

    Article  Google Scholar 

  84. Seppälä R, Buck A, Katila P (2009) Adaptation of forests and people to climate change: a global assessment report. International Union of Forest Research Organizations, Helsinki

    Google Scholar 

  85. Food Agric Organ (FAO) (2010) Global forest resources assessment 2010. Rome

  86. Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  Google Scholar 

  87. Getzin S, Wiegand K, Schöning I (2012) Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol Evol 3:397–404

    Article  Google Scholar 

  88. Zahawi RA, Dandois JP, Holl KD et al (2015) Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol Conserv 186:287–295

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Chinese Scholarship Council (201204910187) for the support to GF. GF was also funded by the Starting Funding for Scientific Research from Inner Mongolia University. JCS was funded by the European Research Council (ERC-2012-StG-310886-HISTFUNC) and the Danish Council for Independent Research | Natural Sciences (12-125079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Mi, X., Yan, H. et al. CForBio: a network monitoring Chinese forest biodiversity. Sci. Bull. 61, 1163–1170 (2016). https://doi.org/10.1007/s11434-016-1132-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1132-9

Keywords

Navigation