Skip to main content
Log in

Progress in flexible organic thin-film transistors and integrated circuits

  • Review
  • Materials Science
  • Published:
Science Bulletin

Abstract

Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solution-processed methods, it forges ahead toward large-area, low-cost manufacturing goals. As an indispensable complement to traditional silicon-based transistors, organic thin-film field-effect transistors have made great progress in materials, performance, bending capacity, and integrated circuits in recent few years. Flexible transistors and circuitry have extremely promising application prospects and possess irreplaceable status in foldable displays, artificial skins and bendable smart cards. In this review, we will discuss the evolution of flexible organic transistors and integrated circuits in terms of material, fabrication as well as application.

摘要

有机薄膜晶体管 (OTFT) 是柔性器件及可弯曲集成电路的核心电子器件,也是实现便携、大面积、低成本电子产品的基础。近年来,随着有机材料的发展及成膜工艺的进步,高迁移率高稳定性的有机半导体材料相继问世,有机薄膜晶体管在材料及单元器件制备方面取得了巨大的进步。柔性电路具有极其广阔的应用前景,在可折叠显示器,人工皮肤、可弯曲的智能卡等方面具有不可替代的地位。本文将讨论柔性有机晶体管和集成电路材料,制备以及应用的研究近况。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2

Image comes from http://tu.cnmo.com

Fig. 3

Image source: http://www.evolife.cn

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, Macdiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x . J Chem Soc Chem Commun 16:578–580

    Article  Google Scholar 

  2. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin-film. Appl Phys Lett 49:1210–1212

    Article  Google Scholar 

  3. Mäkelä T, Jussila S, Kosonen H et al (2005) Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors. Synth Met 153:285–288

    Article  Google Scholar 

  4. Sekitani T, Zschieschang U, Klauk H et al (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022

    Article  Google Scholar 

  5. Lee MS, Kang HS, Kang HS et al (2005) Flexible all-polymer field effect transistors with optical transparency using electrically conducting polymers. Thin Solid Films 477:169–173

    Article  Google Scholar 

  6. Lacour SP, Wagner S, Huang ZY et al (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404

    Article  Google Scholar 

  7. Choi MC, Kim Y, Ha CS (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33:581–630

    Article  Google Scholar 

  8. Lee JH, Kim SH, Kim GH et al (2003) Pentacene thin film transistors fabricated on plastic substrates. Synthet Met 139:445–451

    Article  Google Scholar 

  9. Kim SH, Choi HY, Jang J (2004) Effect of source/drain undercut on the performance of pentacene thin-film transistors on plastic. Appl Phys Lett 85:4514

    Article  Google Scholar 

  10. Lee JG, Seol YG, Lee NE (2006) Polymer thin film transistor with electroplated source and drain electrodes on a flexible substrate. Thin Solid Films 515:805–809

    Article  Google Scholar 

  11. Liu P, Wu YL, Li YN et al (2006) Enabling gate dielectric design for all solution-processed, high-performance, flexible organic thin-film transistors. J Am Chem Soc 128:4554–4555

    Article  Google Scholar 

  12. Haas U, Gold H, Haase A et al (2007) Submicron pentacene-based organic thin film transistors on flexible substrates. Appl Phys Lett 91:043511

    Article  Google Scholar 

  13. Ko SH, Pan H, Grigoropoulos CP et al (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202

    Article  Google Scholar 

  14. Arias AC, Daniel J, Sambandan S et al (2008) All printed thin film transistors for flexible electronics. Proc SPIE 7054:70540L

    Article  Google Scholar 

  15. Hines DR, Southard A, Fuhrer MS (2008) Poly(3-hexylthiophene) thin-film transistors with variable polymer dielectrics for transfer-printed flexible electronics. J Appl Phys 104:024510

    Article  Google Scholar 

  16. Kwon JH, Shin S, Choi J et al (2009) A flexible organic thin-film transistor with 6,13-bis(triisopropylsilylethynyl)pentacene and a methyl-siloxane-based dielectric. Solid State Electron 53:266–270

    Article  Google Scholar 

  17. Tan HS, Mathews N, Cahyadi T et al (2009) The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. Appl Phys Lett 94:263303

    Article  Google Scholar 

  18. Yun DJ, Lim SH, Lee TW et al (2009) Fabrication of the flexible pentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate. Org Electron 10:970–977

    Article  Google Scholar 

  19. Liu Z, Oh JH, Roberts ME et al (2009) Solution-processed flexible organic transistors showing very-low subthreshold slope with a bilayer polymeric dielectric on plastic. Appl Phys Lett 94:203301

    Article  Google Scholar 

  20. Boudinet D, Benwadih M, Altazin S et al (2010) Influence of the semi-conductor layer thickness on electrical performance of staggered n- and p-channel organic thin-film transistors. Org Electron 11:291–298

    Article  Google Scholar 

  21. Doi I, Kang MJ, Takimiya K (2012) High mobility organic thin-film transistors on plastic substrate. Curr Appl Phys 12:e2–e5

    Article  Google Scholar 

  22. Hwang DK, Fuentes-Hernandez C, Kim JB et al (2011) Flexible and stable solution-processed organic field-effect transistors. Org Electron 12:1108–1113

    Article  Google Scholar 

  23. Kim SH, Jang M, Yang H et al (2011) Physicochemically stable polymer-coupled oxide dielectrics for multipurpose organic electronic applications. Adv Funct Mater 21:2198–2207

    Article  Google Scholar 

  24. Zschieschang U, Ante F, Kaelblein D et al (2011) Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org Electron 12:1370–1375

    Article  Google Scholar 

  25. Zschieschang U, Kang MJ, Takimiya K et al (2012) Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J Mater Chem 22:4273

    Article  Google Scholar 

  26. Schön J, Kloc C, Batlogg B et al (2000) On the intrinsic limits of pentacene field-effect transistors. Org Electron 1:57–64

    Article  Google Scholar 

  27. Hizu K, Sekitani T, Someya T et al (2007) Reduction in operation voltage of complementary organic thin-film transistor inverter circuits using double-gate structures. Appl Phys Lett 90:093504

    Article  Google Scholar 

  28. Yan H, Zheng Y, Blache R et al (2008) Solution processed top-gate n-channel transistors and complementary circuits on plastics operating in ambient conditions. Adv Mater 20:3393–3398

    Article  Google Scholar 

  29. Yan H, Chen Z, Zheng Y et al (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    Article  Google Scholar 

  30. Fujisaki Y, Nakajima Y, Kumaki D et al (2010) Air-stable n-type organic thin-film transistor array and high gain complementary inverter on flexible substrate. Appl Phys Lett 97:133303

    Article  Google Scholar 

  31. Zhao Y, Di C, Gao X et al (2011) All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. Adv Mater 23:2448–2453

    Article  Google Scholar 

  32. Jang J, Nam S, Yun WM et al (2011) High T g cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. J Mater Chem 21:12542–12546

    Article  Google Scholar 

  33. Jeon J, Tee BCK, Murmann B et al (2012) Micro-imprinted prism substrate for self-aligned short channel organic transistors on a flexible substrate. Appl Phys Lett 100:043301

    Article  Google Scholar 

  34. Klauk H, Zschieschang U, Pflaum J et al (2007) Ultralow-power organic complementary circuits. Nature 445:745–748

    Article  Google Scholar 

  35. Jones BA, Facchetti A, Marks TJ et al (2007) Cyanonaphthalene diimide semiconductors for air-stable, flexible, and optically transparent n-channel field-effect transistors. Chem Mater 19:2703–2705

    Article  Google Scholar 

  36. Na JH, Kitamura M, Arakawa Y (2007) High performance n-channel thin-film transistors with an amorphous phase C60 film on plastic substrate. Appl Phys Lett 91:193501

    Article  Google Scholar 

  37. Cosseddu P, Bonfiglio A, Salzmann I et al (2008) Ambipolar transport in transparent and flexible all-organic heterojunction field effect transistors at ambient conditions. Org Electron 9:191–197

    Article  Google Scholar 

  38. Meijer EJ, De Leeuw DM, Setayesh S et al (2003) Solution-processed ambipolar organic field-effect transistors and inverters. Nat Mater 2:678–682

    Article  Google Scholar 

  39. Anthopoulos TD, Setayesh S, Smits E et al (2006) Air-stable complementary-like circuits based on organic ambipolar transistors. Adv Mater 18:1900–1904

    Article  Google Scholar 

  40. Saudari SR, Lin YJ, Lai Y et al (2010) Device configurations for ambipolar transport in flexible, pentacene transistors. Adv Mater 22:5063–5068

    Article  Google Scholar 

  41. Veres J, Ogier SD, Leeming SW et al (2003) Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv Funct Mater 13:199–204

    Article  Google Scholar 

  42. Richards T, Bird M, Sirringhaus H (2008) A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. J Chem Phys 128:234905

    Article  Google Scholar 

  43. Yang SY, Meghdadi T, Gunes S et al (2005) The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv Funct Mater 15:1806–1814

    Article  Google Scholar 

  44. Chia-Yu W, Adriyanto F, Lin YJ et al (2009) Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator. Electron Device Lett IEEE 30:1039–1041

    Article  Google Scholar 

  45. Groner M, Fabreguette FH, Elam JW et al (2004) Low-temperature Al2O3 atomic layer deposition. Chem Mater 16:639–645

    Article  Google Scholar 

  46. Cai QJ, Gan Y, Chan-Park MB et al (2008) Solution-processable organic-capped titanium oxide nanoparticle dielectrics for organic thin-film transistors. Appl Phys Lett 93:113304

    Article  Google Scholar 

  47. Bartic C, Jansen H, Campitelli A et al (2002) Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org Electron 3:65–72

    Article  Google Scholar 

  48. Hwang DK, Lee K, Kim JH et al (2006) Low-voltage high-mobility pentacene thin-film transistors with polymer/high-k oxide double gate dielectrics. Appl Phys Lett 88:243513

    Article  Google Scholar 

  49. Wang G, Moses D, Heeger AJ (2004) Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator. J Appl Phys 95:316–322

    Article  Google Scholar 

  50. Lee WH, Wang CC, Ho JC (2009) Influence of nano-composite gate dielectrics on OTFT characteristics. Thin Solid Films 517:5305–5310

    Article  Google Scholar 

  51. Jang Y, Kim DH, Park YD et al (2006) Low-voltage and high-field-effect mobility organic transistors with a polymer insulator. Appl Phys Lett 88:072101

    Article  Google Scholar 

  52. Jung SW, Yoon SM, Kang SY et al (2011) Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics. Curr Appl Phys 11:S213–S218

    Google Scholar 

  53. Cheng SS, Yang C, Ou C et al (2008) Pentacene thin-film transistor with PVP-capped high-k MgO dielectric grown by reactive evaporation. Electrochem Solid State Lett 11:H118–H120

    Article  Google Scholar 

  54. Ma H, Acton O, Ting G et al (2008) Low-voltage organic thin-film transistors with π-σ-phosphonic acid molecular dielectric monolayers. Appl Phys Lett 92:113303

    Article  Google Scholar 

  55. Yoon MH, Facchetti A, Marks TJ et al (2005) σ–π molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc Natl Acad Sci USA 102:4678–4682

    Article  Google Scholar 

  56. Acton O, Ting G, Ma H et al (2008) π-σ-Phosphonic acid organic monolayer/sol–gel hafnium oxide hybrid dielectrics for low-voltage organic transistors. Adv Mater 20:3697–3701

    Article  Google Scholar 

  57. Di Benedetto SA, Frattarelli DL, Facchetti A et al (2009) Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors. J Am Chem Soc 131:11080–11090

    Article  Google Scholar 

  58. Dimitrakopoulos C, Purushothaman S, Kymissis J et al (1999) Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283:822–824

    Article  Google Scholar 

  59. Majewski LA, Grell M, Ogier SD et al (2003) A novel gate insulator for flexible electronics. Org Electron 4:27–32

    Article  Google Scholar 

  60. Majewski LA, Schroeder R, Grell M et al (2004) High capacitance organic field-effect transistors with modified gate insulator surface. J Appl Phys 96:5781–5787

    Article  Google Scholar 

  61. De Boer R, Iosad NN, Stassen AF et al (2005) Influence of the gate leakage current on the stability of organic single-crystal field-effect transistors. Appl Phys Lett 86:032103

    Article  Google Scholar 

  62. Majewski LA, Schroeder R, Grell M (2005) One volt organic transistor. Adv Mater 17:192–196

    Google Scholar 

  63. Jung SW, Lee JK, Kim YS et al (2010) Top-gate ferroelectric thin-film-transistors with P(VDF-TrFE) copolymer. Curr Appl Phys 10:e58–e61

    Article  Google Scholar 

  64. Kim SH, Sang Y, Shin K et al (2006) Low-operating-voltage pentacene field-effect transistor with a high-dielectric-constant polymeric gate dielectric. Appl Phys Lett 89:183516

    Article  Google Scholar 

  65. Byun HS, Xu YX, Song CK (2005) Fabrication of high performance pentacene thin film transistors using poly(4-vinylphenol) as the gate insulator on polyethylene terephthalate substrates. Thin Solid Films 493:278–281

    Article  Google Scholar 

  66. Deman AL, Tardy J (2005) PMMA–Ta2O5 bilayer gate dielectric for low operating voltage organic FETs. Org Electron 6:78–84

    Article  Google Scholar 

  67. Cosseddu P, Lai S, Barbaro M et al (2012) Ultra-low voltage, organic thin film transistors fabricated on plastic substrates by a highly reproducible process. Appl Phys Lett 100:093305

    Article  Google Scholar 

  68. Lee K, Lee K, Oh MS et al (2008) Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at −5 V. Org Electron 10:194–198

    Article  Google Scholar 

  69. Kim CS, Jo SJ, Kim JB et al (2007) High-performance and low-voltage pentacene thin film transistors fabricated on the flexible substrate. Semicond Sci Technol 22:691–694

    Article  Google Scholar 

  70. Hwang DK, Choi JM, Park JH et al (2007) Low-voltage pentacene thin-film transistor with a polymer/YO x /polymer triple-layer dielectric on a plastic substrate. Electrochem Solid State Lett 10:H117

    Article  Google Scholar 

  71. Seol YG, Noh HY, Lee SS et al (2008) Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors. Appl Phys Lett 93:013305

    Article  Google Scholar 

  72. Kim BJ, Jang H, Lee S et al (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10:3464–3466

    Article  Google Scholar 

  73. Knipp D, Street RA, Volkel A et al (2003) Pentacene thin film transistors on inorganic dielectrics: morphology, structural properties, and electronic transport. J Appl Phys 93:347–355

    Article  Google Scholar 

  74. Steudel S, De Vusser S, De Jonge S et al (2004) Influence of the dielectric roughness on the performance of pentacene transistors. Appl Phys Lett 85:4400–4402

    Article  Google Scholar 

  75. Minari T, Kano M, Miyadera T et al (2008) Selective organization of solution-processed organic field-effect transistors. Appl Phys Lett 92:173301

    Article  Google Scholar 

  76. Tsud N, Yoshitake M (2007) Vacuum vapour deposition of phenylphosphonic acid on amorphous alumina. Surf Sci 601:3060–3066

    Article  Google Scholar 

  77. Sekitani T, Noguchi Y, Zschieschang U et al (2008) Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc Natl Acad Sci USA 105:4976–4980

    Article  Google Scholar 

  78. Zschieschang U, Yamamoto T, Takimiya K et al (2011) Organic electronics on banknotes. Adv Mater 23:654–658

    Article  Google Scholar 

  79. Zschieschang U, Ante F, Yamamoto T et al (2010) Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv Mater 22:982–985

    Article  Google Scholar 

  80. Fukuda K, Hamamoto T, Yokota T et al (2009) Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Appl Phys Lett 95:203301

    Article  Google Scholar 

  81. de Boer B, Hadipour A, Mandoc MM et al (2005) Tuning of metal work functions with self-assembled monolayers. Adv Mater 17:621–625

    Article  Google Scholar 

  82. Hamadani BH, Corley DA, Ciszek JW et al (2006) Controlling charge injection in organic field-effect transistors using self-assembled monolayers. Nano Lett 6:1303–1306

    Article  Google Scholar 

  83. Boudinet D, Le Blevennec G, Serbutoviez C et al (2009) Contact resistance and threshold voltage extraction in n-channel organic thin film transistors on plastic substrates. J Appl Phys 105:084510

    Article  Google Scholar 

  84. Gundlach DJ, Royer JE, Park SK et al (2008) Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat Mater 7:216–221

    Article  Google Scholar 

  85. DiBenedetto SA, Frattarelli D, Ratner MA et al (2008) Vapor phase self-assembly of molecular gate dielectrics for thin film transistors. J Am Chem Soc 130:7528–7529

    Article  Google Scholar 

  86. Lee BH, Ryu MK, Choi SY et al (2007) Rapid vapor-phase fabrication of organic–inorganic hybrid superlattices with monolayer precision. J Am Chem Soc 129:16034–16041

    Article  Google Scholar 

  87. Brown A, Pomp A, Hart CM et al (1995) Logic gates made from polymer transistors and their use in ring oscillators. Science 270:972–974

    Article  Google Scholar 

  88. Drury CJ, Mutsaers CMJ, Hart CM et al (1998) Low-cost all-polymer integrated circuits. Appl Phys Lett 73:108–110

    Article  Google Scholar 

  89. Gelinck G, Geuns T, De Leeuw D (2000) High-performance all-polymer integrated circuits. Appl Phys Lett 77:1487–1489

    Article  Google Scholar 

  90. Kane MG, Campi J, Hammond MS et al (2000) Analog and digital circuits using organic thin-film transistors on polyester substrates. Electron Device Lett IEEE 21:534–536

    Article  Google Scholar 

  91. Sheraw CD, Nichols JA, Gundlach DJ et al (2000) Fast organic circuits on flexible polymeric substrates. IEDM Tech Dig Int 619–622

  92. Sirringhaus H, Kawase T, Friend RH et al (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Article  Google Scholar 

  93. Kawase T, Sirringhaus H, Friend RH et al (2001) Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv Mater 13:1601

    Article  Google Scholar 

  94. Gelinck GH, Huitema HE, van Veenendaal E et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3:106–110

    Article  Google Scholar 

  95. Klauk H, Halik M, Eder F et al (2004) Low-voltage flexible organic circuits with molecular gate dielectrics. IEDM Tech Dig 369–372

  96. Marien H, Steyaert M, van Aerle N et al (2009) A mixed-signal organic 1 kHz comparator with low VT sensitivity on flexible plastic substrate. In: ESSCIRC 2009 proceedings, p 121

  97. Cao Q, Kim H, Pimparkar N et al (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Article  Google Scholar 

  98. Park SK, Mourey DA, Subramanian S et al (2008) Polymeric substrate spin-cast diF-TESADT OTFT circuits. Electron Device Lett IEEE 29:1004–1006

    Article  Google Scholar 

  99. Rogers JA, Bao Z, Dodabalapur A et al (2000) Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping. Electron Device Lett IEEE 21:100–103

    Article  Google Scholar 

  100. Klauk H, Halik M, Zschieschang U et al (2005) Flexible organic complementary circuits. IEEE Trans Electron Dev 52:618–622

    Article  Google Scholar 

  101. Zhang XH, Potscavage WJ, Choi S et al (2009) Low-voltage flexible organic complementary inverters with high noise margin and high dc gain. Appl Phys Lett 94:043312

    Article  Google Scholar 

  102. Someya T, Kato Y, Sekitani T et al (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102:12321–12325

    Article  Google Scholar 

  103. Huitema E, Gelinck G, van der Putten B et al (2003) Plastic transistors in active-matrix displays. IEEE ISSCC Digest Technol 380–381

Download references

Acknowledgments

This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12030400), the National Basic Research Program of China (2013CB933504), the National Natural Science Foundation of China (61221004), the Beijing Training Project for the Leading Talents in S&T (Z151100000315008), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Science, and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuoyu Ji or Ming Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Ji, Z., Xu, G. et al. Progress in flexible organic thin-film transistors and integrated circuits. Sci. Bull. 61, 1081–1096 (2016). https://doi.org/10.1007/s11434-016-1115-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1115-x

Keywords

Navigation