Skip to main content
Log in

Morphology, mitochondrial development and adipogenic-related genes expression during adipocytes differentiation in grass carp (Ctenopharyngodon idellus)

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

To investigate the differentiation mechanism of grass carp preadipocytes, a primary adipocytes culture system was established. Confluent preadipocytes were induced to differentiation, and the morphology and gene expression were evaluated at different stages. It was shown that preadipocytes were gradually filled with droplets and the cellular lipid content increased during the differentiation. Ultrastructure observation indicated that the number of mitochondria increased with adipocytes differentiation. Consistently, the mitochondrial protein content was elevated in the differentiating adipocytes. qRT-PCR showed that the expression level of lipogenesis-related genes such as peroxisome proliferator activator receptor γ (PPAR γ), lipoprotein lipase (LPL), fatty acid synthase (FAS) and stearoyl-CoA desaturase (SCD) increased during adipocytes differentiation. The mitochondrial relevant gene also elevated when adipocyte differentiation, such as PPAR coactivator-1 (PGC-1 α), PGC-1 β and nuclear respiratory factor (NRF-1). However, the expression of carnitine palmitoyltransferase I α (CPT-1 α) gene decreased at the initial stage, but increased at the last stage of cell differentiation. These results indicated that the differentiation process of grass carp preadipocytes is similar to that of land animals, but the molecular mechanisms are not exactly the same. The findings revealed in this study provides new information to the study of fish adipocyte differentiation.

摘要

为了研究草鱼前体脂肪细胞的分化特征,分别收集不同分化阶段的脂肪细胞。油红O染色及提取法观测脂质蓄积情况;透射电镜观察细胞分化过程中胞内脂滴及线粒体的变化;提取细胞胞浆与线粒体蛋白分析线粒体蛋白含量的变化;实时定量PCR检测细胞脂质生成及线粒体发育相关基因的表达变化。结果显示,草鱼前体脂肪细胞在分化过程中,脂质含量逐渐且胞内脂滴增多,线粒体数量及蛋白含量也逐渐增加,脂质生成及线粒体发育相关基因表达水平也显著上调。说明草鱼前体脂肪细胞分化特征与哺乳动物相类似,细胞分化过程中线粒体的数量和蛋白含量增加,线粒体发育相关基因的表达水平也有所升高,表明线粒体在脂肪细胞分化过程中发挥着一定的作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  Google Scholar 

  2. Siersbæk R, Nielsen R, Mandrup S (2010) PPARγ in adipocyte differentiation and metabolism–novel insights from genome-wide studies. FEBS Lett 584:3242–3249

    Article  Google Scholar 

  3. Vegusdal A, Sundvold H, Gjøen T et al (2003) An in vitro method for studying the proliferation and differentiation of Atlantic salmon preadipocytes. Lipids 38:289–296

    Article  Google Scholar 

  4. Oku H, Tokuda M, Okumura T et al (2006) Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 144:326–333

    Article  Google Scholar 

  5. Bouraoui L, Gutierrez J, Navarro I (2008) Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss). J Endocrinol 198:459–469

    Article  Google Scholar 

  6. Ji H, Cao YZ, Lin YQ et al (2009) Primary culture of grass carp preadipocyte in vitro. Acta Hydrobiol Sin 33:280–284

    Article  Google Scholar 

  7. Li Y (2012) Establishment and evaluation of a new model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes. In Vitro Cell Dev Biol Anim 48:37–42

    Article  Google Scholar 

  8. Wang X, Huang M, Wang Y (2012) The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.). PLoS One 7:e48069

    Article  Google Scholar 

  9. Salmerón C, Acerete L, Gutiérrez J et al (2013) Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata). Domest Anim Endocrinol 45:1–10

    Article  Google Scholar 

  10. Cheng YC, Chen HY (2013) Effects of different fatty acids on cell differentiation and lipid accumulation in preadipocytes of warm water fish cobia (Rachycentron canadum Linnaeus, 1766). Aquac Res. doi:10.1111/are.12204

    Google Scholar 

  11. Oku H, Umino T (2008) Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 151:268–277

    Article  Google Scholar 

  12. Hausman GJ (2003) Dexamethasone induced preadipocyte recruitment and expression of CCAAT/enhancing binding protein α and peroxisome proliferator activated receptor-γ proteins in porcine stromal-vascular (SV) cell cultures obtained before and after the onset of fetal adipogenesis. Gen Comp Endocrinol 133:61–70

    Article  Google Scholar 

  13. Hausman G, Dodson M, Ajuwon K et al (2009) Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 87:1218–1246

    Article  Google Scholar 

  14. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  Google Scholar 

  15. Andersen O, Eijsink VGH, Thomassen M (2000) Multiple variants of the peroxisome proliferator-activated receptor (PPAR)γ are expressed in the liver of Atlantic salmon (Salmo salar). Gene 255:411–418

    Article  Google Scholar 

  16. Leaver MJ, Boukouvala E, Antonopoulou E et al (2005) Three peroxisome proliferator-activated receptor isotypes from each of two species of marinefish. Endocrinology 146:3150–3162

    Article  Google Scholar 

  17. Huang TS, Todorčević M, Ruyter B et al (2010) Altered expression of CCAAT/enhancer binding protein and FABP11 genes during adipogenesis in vitro in Atlantic salmon (Salmo salar). Aquac Nutr 16:72–80

    Article  Google Scholar 

  18. Kusminski CM, Scherer PE (2012) Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab 23:435–443

    Article  Google Scholar 

  19. Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094

    Article  Google Scholar 

  20. Wilson-Fritch L, Nicoloro S, Lazar MA et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289

    Article  Google Scholar 

  21. Bogacka I, Ukropcova B, McNeil M et al (2005) Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab 90:6650–6656

    Article  Google Scholar 

  22. Lu RH, Ji H, Chang ZG et al (2010) Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol Biol Rep 37:2173–2182

    Article  Google Scholar 

  23. St-Pierre J, Lin J, Krauss S et al (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem 278:26597–26603

    Article  Google Scholar 

  24. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:113–118

    Article  Google Scholar 

  25. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  Google Scholar 

  26. Vankoningsloo S, Piens M, Lecocq C et al (2005) Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid β-oxidation and glucose. J Lipid Res 46:1133–1149

    Article  Google Scholar 

  27. Gao CL, Zhu C, Zhao YP et al (2010) Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 320:25–33

    Article  Google Scholar 

  28. Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97:493–497

    Article  Google Scholar 

  29. Todorčević M, Vegusdal A, Gjøen T et al (2008) Changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; effects of n-3 and n-9 fatty acids. Biochim Biophys Acta 1781:326–335

    Article  Google Scholar 

  30. Escher P, Braissant O, Basu-Modak S (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202

    Article  Google Scholar 

  31. Lee CH, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207

    Article  Google Scholar 

  32. Pasquali D, Pierantoni GM, Fusco A et al (2004) Fenofibrate increases the expression of high mobility group AT-hook 2 (HMGA2) gene and induces adipocyte differentiation of orbital fibroblasts from Graves’ ophthalmopathy. J Mol Endocrinol 33:133–143

    Article  Google Scholar 

  33. Rosen ED, Sarraf P, Troy AE et al (1999) PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617

    Article  Google Scholar 

  34. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    Article  Google Scholar 

  35. Siersbæk R, Nielsen R, Mandrup S (2012) Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 23:56–64

    Article  Google Scholar 

  36. Shao D, Lazar MA (1997) Peroxisome proliferator activated receptor γ, CCAAT/enhancer-binding protein α, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 272:21473–21478

    Article  Google Scholar 

  37. Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122S–3126S

    Google Scholar 

  38. Albalat A, Sánchez-Gurmaches J, Gutiérrez J et al (2006) Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues. Gen Comp Endocrinol 146:226–235

    Article  Google Scholar 

  39. Bouraoui L, Cruz-Garcia L, Gutiérrez J et al (2012) Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout (Oncorhynchus mykiss) adipocyte cells in culture. Comp Biochem Physiol A Mol Integr Physiol 161:83–88

    Article  Google Scholar 

  40. Paulauskis JD, Sul HS (1988) Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem 263:7049–7054

    Google Scholar 

  41. Kaestner KH, Ntambi JM, Kelly TJ Jr et al (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 264:14755–14761

    Google Scholar 

  42. De Pauw A, Tejerina S, Raes M et al (2009) Mitochondrial (dys) function in adipocyte (de) differentiation and systemic metabolic alterations. Am J Pathol 175:927–939

    Article  Google Scholar 

  43. Todorčević M, Kjær MA, Djaković N et al (2009) N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp Biochem Physiol B Biochem Mol Biol 152:135–143

    Article  Google Scholar 

  44. Koh EH, Park JY, Park HS et al (2007) Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56:2973–2981

    Article  Google Scholar 

  45. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    Article  Google Scholar 

  46. Olswang Y, Cohen H, Papo O et al (2002) A mutation in the peroxisome proliferator-activated receptor γ-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc Natl Acad Sci USA 99:625–630

    Article  Google Scholar 

  47. Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    Article  Google Scholar 

  48. Ji H, Lu RH, Chang ZG et al (2010) PGC-1β modulates the expression of genes involved in mitochondrial function and adipogenesis during preadipocyte differentiation. Reprod Domest Anim 47:419–427

    Article  Google Scholar 

  49. Kamei Y, Ohizumi H, Fujitani Y et al (2003) PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 100:12378–12383

    Article  Google Scholar 

  50. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104:531–543

    Article  Google Scholar 

  51. Wang C, Li Z, Lu Y et al (2006) Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci USA 103:11567–11572

    Article  Google Scholar 

  52. Dhar SS, Ongwijitwat S, Wong-Riley MT (2008) Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283:3120–3129

    Article  Google Scholar 

  53. Rylova SN, Albertioni F, Flygh G et al (2005) Activity profiles of deoxynucleoside kinases and 5′-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs. Biochem Pharmacol 69:951–960

    Article  Google Scholar 

  54. Kaaman M, Sparks LM, Van Harmelen V et al (2007) Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 50:2526–2533

    Article  Google Scholar 

  55. Shi X, Burkart A, Nicoloro SM et al (2008) Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem 283:30658–30667

    Article  Google Scholar 

  56. Louet J, Chatelain F, Decaux J et al (2001) Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor α (PPAR α)-independent pathway. Biochem J 354:189–197

    Article  Google Scholar 

  57. Rhee J, Inoue Y, Yoon JC et al (2003) Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci USA 100:4012–4017

    Article  Google Scholar 

  58. Song S, Zhang Y, Ma K et al (2004) Peroxisomal proliferator activated receptor gamma coactivator (PGC-1α) stimulates carnitine palmitoyltransferase I (CPT-I α) through the first intron. Biochim Biophys Acta 1679:164–173

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31072223) and the National Basic Research Program of China (2014CB138603). The authors would thank Jingjing Tian, Caixia Lei, Wen Zhang, Xuexian Li for their assistance in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ji.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Ji, H., Li, C. et al. Morphology, mitochondrial development and adipogenic-related genes expression during adipocytes differentiation in grass carp (Ctenopharyngodon idellus). Sci. Bull. 60, 1241–1251 (2015). https://doi.org/10.1007/s11434-015-0833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0833-9

Keywords

关键词

Navigation