Skip to main content
Log in

Rayleigh backscattering: a method to highly compress laser linewidth

  • Article
  • Optoelectronics & Laser
  • Published:
Chinese Science Bulletin

Abstract

Ultra-narrow linewidth laser with several hundred hertz at room temperature has attracted a great deal of attention in recent years and played a critical role in both optical sensing and communication fields. In this paper, a new method based on Rayleigh backscattering to highly compress the laser linewidth was proposed and demonstrated theoretically and experimentally. By theoretical analysis and simulation, Rayleigh backscattering can be collected in any waveguide structure and all wave bands, which could have a revolutionary impact on the field of laser. A single-longitudinal mode fiber ring laser with 130-Hz linewidth was achieved with self-injection feedback structure at normal atmospheric temperature. The linewidth compression based on Rayleigh backscattering lies in the fact that laser linewidth after scattering is narrower than that of incident light in high Rayleigh scattering structure. The self-rejection feedback method expanding free spectra range of laser cavity simultaneously was used to further suppress the mode-hopping and stabilizing output. Experimental results showed that the laser linewidth can be easily narrowed to hundreds of hertz with side-mode suppression up to 75 dB. This agrees with the theoretical analysis and simulation results qualitatively.

摘要

频率线宽低至数百赫兹的超窄激光器具有极低的频率噪声和超长的相干长度, 在光原子钟、引力波探测、低噪声微波信号产生、高精度激光测距以及光纤传感等领域有重要的应用. 论文首次提出了基于后向瑞利散射的激光线宽压缩模型, 实验中利用瑞利散射机制和自注入反馈结构得到了线宽低至130 Hz, 边摸抑制比高达75 dB的超窄线宽激光输出. 基于后向瑞利散射能够对任意波段的单波长或多波长激光线宽产生压缩效果, 并且通过制作和优化产生瑞利散射的波导结构, 能实现常温常态下工作的便携式超窄线宽激光装置.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spiegelberg C, Geng JH, Hu YD et al (2004) Low-noise narrow-linewidth fiber laser at 1550 nm. J Lightwave Technol 22:57–62

    Article  Google Scholar 

  2. Kurtz J (1993) Coherent radar performance estimation. Artech House, Boston

    Google Scholar 

  3. Fortier TM, Kirchner MS, Quinlan F et al (2011) Generation of ultra-stable microwaves via optical frequency division. Nat Photonics 5:425–429

    Article  Google Scholar 

  4. Shen YH, Qin YQ, Wu B et al (2009) Short cavity single frequency fiber laser for in situ sensing applications over a wide temperature range. Opt Express 15:363–370

    Article  Google Scholar 

  5. Horowitz M, Daisy R, Fischer B et al (1994) Narrow-linewidth, single-mode erbium-doped fibre laser with intra cavity wave mixing in saturable absorber. Electron Lett 30:648–649

    Article  Google Scholar 

  6. Cheng Y, Kringlebotn JT, Loh WH et al (1995) Stable single-frequency traveling-wave fibre loop laser with integral saturable-absorber-based tracking narrow-band filter. Opt Lett 20:875–877

    Article  Google Scholar 

  7. Meng Z, Stewart G, Whitenett G (2006) Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber. J Lightwave Technol 24:2179–2183

    Article  Google Scholar 

  8. Xu SH, Yang ZM, Zhang WN et al (2011) 400 mW ultra-short cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt Lett 36:3708–3710

    Article  Google Scholar 

  9. Zyskind JL, Mizrahi V, DiGiovanni DJ (1992) Short single frequency Erbium-doped fibre laser. Electron Lett 28:1385–1387

    Article  Google Scholar 

  10. Sprenger B, Schwefel HGL, Wang LJ (2009) Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser. Opt Lett 34:3370–3372

    Article  Google Scholar 

  11. Yin FF, Yang SG, Chen HW et al (2011) 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity. IEEE Photon Technol Lett 32:1658–1660

    Article  Google Scholar 

  12. Spirin VV, López-Mercado CA, Mégret P et al (2012) Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser. Laser Phys Lett 9:377–380

    Article  Google Scholar 

  13. Kessler T, Hagemann C, Grebing C et al (2012) A sub-40 mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat Photonics 6:687–692

    Article  Google Scholar 

  14. Zhu T, Bao XY, Chen LA et al (2010) Experimental study on stimulated Rayleigh scattering in optical fibers. Opt Express 18:22958–22963

    Article  Google Scholar 

  15. Agrawal GP (1995) Nonlinear fiber optics. Academic, California

    Google Scholar 

  16. Heinz TF (2008) Rayleigh scattering spectroscopy. Carbon Nanotubes. Springer, Berlin, pp 353–369

    Google Scholar 

  17. Saxena B, Bao XY, Chen L (2014) Suppression of thermal frequency noise in erbium-doped fiber random lasers. Opt Lett 39:1038–1041

    Article  Google Scholar 

  18. Zhu T, Chen FY, Huang SH et al (2013) An ultra-narrow linewidth fiber ring laser based on Rayleigh backscattering in a tapered optical fiber. Laser Phys Lett 10:055110

    Article  Google Scholar 

  19. Derickson D (1998) Fiber optic test and measurement. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Okusaga O, Cahill J, Docherty A et al (2012) Guided entropy mode Rayleigh scattering in optical fibers. Opt Lett 37:683–685

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61377066), and the Fundamental Research Funds for the Central Universities (CDJZR12125502, 106112013CDJZR120002, and 106112013CDJZR160006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Huang, S., Shi, L. et al. Rayleigh backscattering: a method to highly compress laser linewidth. Chin. Sci. Bull. 59, 4631–4636 (2014). https://doi.org/10.1007/s11434-014-0603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0603-0

Keywords

Navigation