Skip to main content
Log in

Mirror image: newfangled cell-level layout technique for single-event transient mitigation

  • Article
  • Nuclear Science & Technology
  • Published:
Chinese Science Bulletin

Abstract

Recent years, the hardening of combinational circuits is becoming a common concern. Unlike the transistor-level hardening technique, the cell-level hardening technique, a divide and conquer strategy, can substantially make use of some typical character in the cell-circuit module to mitigate single event transient (SET) sensitivity. The mirror image (MI) technique proposed in this paper can adequately enhance the charge sharing in those cell-circuits with stage-by-stage inverter-like structure. 3D TCAD mixed-mode simulation have been performed in 65 nm twin-well bulk CMOS process, the results indicate that the MI technique can almost reduce the SET pulse width from the anterior-stage PMOS over 25 %, and can mitigate the SET pulse width from the posterior-stage PMOS about 10 %. The MI technique, a represent of the cell-level technique, may be the future of the hardening of combinational circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amusan O, Witulski A, Massengill L et al (2006) Charge collection and charge sharing in a 130 nm CMOS technology. IEEE Trans Nucl Sci 53:3253–3258

    Article  Google Scholar 

  2. Amusan A, Massengill L, Baze P et al (2007) Directional sensitivity of Single event upsets in 90 nm CMOS due to charge sharing. IEEE Trans Nucl Sci 54:2584–2589

    Article  Google Scholar 

  3. Liu B, Chen S, Liang B et al (2009) Temperature dependency of charge sharing and MBU sensitivity in 130-nm CMOS technology. IEEE Trans Nucl Sci 56:2473–2479

    Article  Google Scholar 

  4. Uznansk S, Gasiot G, Roche P et al (2010) Monte-Carlo based charge sharing investigations on a bulk 65 nm RHBD flip-flop. IEEE Trans Nucl Sci 57:3267–3272

    Google Scholar 

  5. Amusan O, Casey M, Bhuva B et al (2009) Laser verification of charge sharing in a 90 nm bulk CMOS process. IEEE Trans Nucl Sci 56:3065–3070

    Article  Google Scholar 

  6. Harada R, Mitsuyama Y, Hashimoto M et al (2011) Neutron induced single event multiple transients with voltage scaling and body biasing. IEEE International Reliability Physics Symposium (IRPS) 253–257

  7. Ahlbin J, Massengill L, Bhuva B et al (2009) Single-event transient pulse quenching in advanced CMOS logic circuits. IEEE Trans Nucl Sci 56:3050–3056

    Article  Google Scholar 

  8. Ahlbin J, Gadlage M, Atkinson N et al (2010) Effect of multiple-transistor charge collection on single-event transient pulse widths. IEEE International Reliability Physics Symposium (IRPS) 198–202

  9. Lee H, Lilja K, Bounasser M et al (2010) LEAP: layout design through error-aware transistor positioning for soft-error resilient sequential cell design. IEEE International Reliability Physics Symposium (IRPS) 203–212

  10. Entrena L, Lindoso A, Millan E et al (2012) Constrained placement methodology for reducing SER under single-event-induced charge sharing effects. IEEE Trans Nucl Sci 59:811–817

    Article  Google Scholar 

  11. George N, Lach J (2011) Characterization of logical masking and error propagation in combinational circuits and effects on system vulnerability. IEEE /IFIP 41st international conference on Dependable Systems & Networks (DSN) 323–334

  12. Atkinson N, Witulski A, Holman W et al (2011) Layout technique for single-event transient mitigation via pulse quenching. IEEE Trans Nucl Sci 58:885–890

    Article  Google Scholar 

  13. Musseau O, Cavrois V, Pelloie J et al (2000) Laser probing of bipolar amplification in 0.25-μm MOS/SOI transistors. IEEE Trans Nucl Sci 47:2196–2203

    Article  Google Scholar 

  14. Amusan O, Massengill L, Bhuva B et al (2007) Design techniques to reduce SET pulse widths in deep-submicron combinational logic. IEEE Trans Nucl Sci 54:2060–2064

    Article  Google Scholar 

  15. Zhang Q, Hou M, Liu J et al (2002) σ-LET curve obtained with heavy ions accelerated by HIRFL. Chin Sci Bull 47:1431–1433

    Article  Google Scholar 

  16. Narasimham B, Bhuva B, Massengill L et al (2010) Scaling trends in SET pulse widths in sub-100 nm bulk CMOS processes. IEEE Trans Nucl Sci 57:3336–3341

    Google Scholar 

  17. Baumann R (2001) Soft errors in advance semiconductor devices—part I: the three radiation sources. IEEE Trans Dev Mat Rel 1:17–22

    Article  Google Scholar 

  18. Chen J, Chen S, Liang B et al (2012) Simulation study of the layout isolation techniques for p-hit single-event transient mitigation. IEEE Trans Dev Mat Rel 12:501–509

    Article  Google Scholar 

  19. Rodbell K, Heidel D, Pellish J et al (2011) 32 and 45 nm radiation-hardened-by-design (RHBD) SOI latches. IEEE Trans Nucl Sci 58:2702–2710

    Article  Google Scholar 

  20. Chen J, Chen S, He Y et al (2012) Novel layout techniques for n-hit single-event transient mitigation by source extension. IEEE Trans Nucl Sci 59:2859–2866

    Article  Google Scholar 

  21. Atkinson N (2010) Single-event characterization of a 90-nm bulk CMOS digital cell library. Dissertation for Master Degree, Vanderbilt University

  22. Huang P, Chen S, Chen J et al (2013) Novel n-hit single event transient technique via open guard transistor in 65 nm bulk CMOS process. Sci China Tech Sci 56:271–279

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61376109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Chen, S., Liang, Z. et al. Mirror image: newfangled cell-level layout technique for single-event transient mitigation. Chin. Sci. Bull. 59, 2850–2858 (2014). https://doi.org/10.1007/s11434-014-0409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0409-0

Keywords

Navigation