Skip to main content
Log in

High-order time-reversal symmetry breaking normal state

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors. When two superconducting gap functions with different symmetries compete, the relative phase channel (θθ1θ2) exhibits an Ising-type Z2 symmetry due to the second order Josephson coupling, where θ1,2 are the phases of two gap functions. In contrast, the U(1) symmetry in the channel of \({\theta _ + } \equiv {{{\theta _1} + {\theta _2}} \over 2}\) is intact. The phase locking, i.e., ordering of θ, can take place in the phase fluctuation regime before the onset of superconductivity, i.e., when θ+ is disordered. If θ is pinned at \( \pm {\pi \over 2}\), then time-reversal symmetry is broken in the normal state, otherwise, if θ = 0, or, π, rotational symmetry is broken, leading to a nematic normal state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory, which can be viewed as a high order symmetry breaking. We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem. As a natural by-product, we also find the other interesting intermediate phase corresponds to ordering of θ+ but with θ disordered. This is the quartetting, or, charge-4e, superconductivity, which occurs above the low temperature Z2-breaking charge-2e superconducting phase. Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. J. G. Bednorz, and K. A. Müller, Z. Phys. B-Condensed Matter 64, 189 (1986).

    Article  ADS  CAS  Google Scholar 

  2. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    Article  ADS  CAS  Google Scholar 

  3. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature 453, 376 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. W. C. Lee, S. C. Zhang, and C. Wu, Phys. Rev. Lett. 102, 217002 (2009), arXiv: 0810.0887.

    Article  ADS  PubMed  Google Scholar 

  5. C. Wu, and J. E. Hirsch, Phys. Rev. B 81, 020508 (2010).

    Article  ADS  Google Scholar 

  6. V. Stanev, and Z. Tešanović, Phys. Rev. B 81, 134522 (2010), arXiv: 0912.5214.

    Article  ADS  Google Scholar 

  7. M. Khodas, and A. V. Chubukov, Phys. Rev. Lett. 108, 247003 (2012), arXiv: 1202.5563.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. J. Garaud, and E. Babaev, Phys. Rev. Lett. 112, 017003 (2014), arXiv: 1308.3220.

    Article  ADS  PubMed  Google Scholar 

  9. S. Maiti, M. Sigrist, and A. Chubukov, Phys. Rev. B 91, 161102 (2015), arXiv: 1412.7439.

    Article  ADS  Google Scholar 

  10. S. Z. Lin, S. Maiti, and A. Chubukov, Phys. Rev. B 94, 064519 (2016), arXiv: 1607.00109.

    Article  ADS  Google Scholar 

  11. Y. Wang, and L. Fu, Phys. Rev. Lett. 119, 187003 (2017), arXiv: 1703.06880.

    Article  ADS  PubMed  Google Scholar 

  12. J. Kang, A. V. Chubukov, and R. M. Fernandes, Phys. Rev. B 98, 064508 (2018), arXiv: 1805.06882.

    Article  ADS  CAS  Google Scholar 

  13. Z. Wang, G. M. Zhang, Y. Yang, and F. C. Zhang, Phys. Rev. B 102, 220501 (2020), arXiv: 2006.15928.

    Article  ADS  CAS  Google Scholar 

  14. L. H. Hu, P. D. Johnson, and C. Wu, Phys. Rev. Res. 2, 022021 (2020), arXiv: 1906.01754.

    Article  CAS  Google Scholar 

  15. R. B. Laughlin, Phys. Rev. Lett. 80, 5188 (1998), arXiv: condmat/9709004.

    Article  ADS  CAS  Google Scholar 

  16. S. Tewari, C. Zhang, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. Lett. 100, 217004 (2008), arXiv: 0711.2329.

    Article  ADS  PubMed  Google Scholar 

  17. Y. Wang, M. Lin, and T. L. Hughes, Phys. Rev. B 98, 165144 (2018), arXiv: 1804.01531.

    Article  ADS  CAS  Google Scholar 

  18. C. Platt, R. Thomale, C. Honerkamp, S. C. Zhang, and W. Hanke, Phys. Rev. B 85, 180502 (2012), arXiv: 1106.5964.

    Article  ADS  Google Scholar 

  19. W. Yang, C. Xu, and C. Wu, Phys. Rev. Res. 2, 042047 (2020).

    Article  CAS  Google Scholar 

  20. M. Silaev, J. Garaud, and E. Babaev, Phys. Rev. B 95, 024517 (2017), arXiv: 1610.05846.

    Article  ADS  Google Scholar 

  21. R. P. Singh, A. D. Hillier, B. Mazidian, J. Quintanilla, J. F. Annett, D. M. K. Paul, G. Balakrishnan, and M. R. Lees, Phys. Rev. Lett. 112, 107002 (2014), arXiv: 1401.2108.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. G. M. Pang, Z. Y. Nie, A. Wang, D. Singh, W. Xie, W. B. Jiang, Y. Chen, R. P. Singh, M. Smidman, and H. Q. Yuan, Phys. Rev. B 97, 224506 (2018), arXiv: 1806.03768.

    Article  ADS  CAS  Google Scholar 

  23. J. A. Sauls, Adv. Phys. 43, 113 (1994), arXiv: 1812.09984.

    Article  ADS  CAS  Google Scholar 

  24. E. R. Schemm, W. J. Gannon, C. M. Wishne, W. P. Halperin, and A. Kapitulnik, Science 345, 190 (2014), arXiv: 1410.1482.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Y. Aoki, A. Tsuchiya, T. Kanayama, S. R. Saha, H. Sugawara, H. Sato, W. Higemoto, A. Koda, K. Ohishi, K. Nishiyama, and R. Kadono, Phys. Rev. Lett. 91, 067003 (2003), arXiv: cond-mat/0308196.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. A. P. MacKenzie, and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  CAS  Google Scholar 

  27. E. R. Schemm, R. E. Baumbach, P. H. Tobash, F. Ronning, E. D. Bauer, and A. Kapitulnik, Phys. Rev. B 91, 140506 (2015), arXiv: 1410.1479.

    Article  ADS  Google Scholar 

  28. P. K. Biswas, H. Luetkens, T. Neupert, T. Stürzer, C. Baines, G. Pascua, A. P. Schnyder, M. H. Fischer, J. Goryo, M. R. Lees, H. Maeter, F. Brückner, H. H. Klauss, M. Nicklas, P. J. Baker, A. D. Hillier, M. Sigrist, A. Amato, and D. Johrendt, Phys. Rev. B 87, 180503 (2013).

    Article  ADS  Google Scholar 

  29. A. D. Hillier, J. Quintanilla, and R. Cywinski, Phys. Rev. Lett. 102, 117007 (2009), arXiv: 0901.3153.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, and R. Cywinski, Phys. Rev. Lett. 109, 097001 (2012), arXiv: 1206.5905.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Z. F. Weng, J. L. Zhang, M. Smidman, T. Shang, J. Quintanilla, J. F. Annett, M. Nicklas, G. M. Pang, L. Jiao, W. B. Jiang, Y. Chen, F. Steglich, and H. Q. Yuan, Phys. Rev. Lett. 117, 027001 (2016), arXiv: 1605.08356.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. X. Gong, M. Kargarian, A. Stern, D. Yue, H. Zhou, X. Jin, V. M. Galitski, V. M. Yakovenko, and J. Xia, Sci. Adv. 3, e1602579 (2017), arXiv: 1609.08538.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. T. Shang, M. Smidman, A. Wang, L. J. Chang, C. Baines, M. K. Lee, Z. Y. Nie, G. M. Pang, W. Xie, W. B. Jiang, M. Shi, M. Medarde, T. Shiroka, and H. Q. Yuan, Phys. Rev. Lett. 124, 207001 (2020), arXiv: 2004.10425.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. S. K. Ghosh, M. Smidman, T. Shang, J. F. Annett, A. D. Hillier, J. Quintanilla, and H. Yuan, J. Phys.-Condens. Matter 33, 033001 (2021), arXiv: 2003.04357.

    Article  ADS  CAS  Google Scholar 

  35. A. Schenck, Muon Spin Rotation Spectroscopy: Principles and Applications in Solid State Physics (Taylor and Francis, London, 1985).

    Google Scholar 

  36. S. L. Lee, R. Cywinski, and S. Kilcoyne, Muon Science: Muons in Physics, Chemistry and Materials, volume 51 (CRC Press, Boca Raton, 1999).

    Google Scholar 

  37. A. Yaouanc, and P. D. De Reotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter, volume 147 (Oxford University Press, Oxford, 2011).

    Google Scholar 

  38. S. Spielman, K. Fesler, C. B. Eom, T. H. Geballe, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 65, 123 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. A. Kapitulnik, J. Xia, E. Schemm, and A. Palevski, New J. Phys. 11, 055060 (2009), arXiv: 0906.2845.

    Article  ADS  Google Scholar 

  40. V. Grinenko, R. Sarkar, K. Kihou, C. H. Lee, I. Morozov, S. Aswartham, B. Büchner, P. Chekhonin, W. Skrotzki, K. Nenkov, R. Hühne, K. Nielsch, S. L. Drechsler, V. L. Vadimov, M. A. Silaev, P. A. Volkov, I. Eremin, H. Luetkens, and H. H. Klauss, Nat. Phys. 16, 789 (2020).

    Article  CAS  Google Scholar 

  41. N. Zaki, G. Gu, A. Tsvelik, C. Wu, and P. D. Johnson, Proc. Natl. Acad. Sci. U.S.A. 118, e2007241118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. V. J. Emery, and S. A. Kivelson, Nature 374, 434 (1995).

    Article  ADS  CAS  Google Scholar 

  43. S. Kasahara, T. Yamashita, A. Shi, R. Kobayashi, Y. Shimoyama, T. Watashige, K. Ishida, T. Terashima, T. Wolf, F. Hardy, C. Meingast, H. Löhneysen, A. Levchenko, T. Shibauchi, and Y. Matsuda, Nat. Commun. 7, 12843 (2016), arXiv: 1608.01829.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Z. Cai, and C. Wu, Phys. Rev. A 84, 033635 (2011), arXiv: 1106.1121.

    Article  ADS  Google Scholar 

  45. F. Hébert, Z. Cai, V. G. Rousseau, C. Wu, R. T. Scalettar, and G. G. Batrouni, Phys. Rev. B 87, 224505 (2013), arXiv: 1304.0554.

    Article  ADS  Google Scholar 

  46. T. A. Bojesen, E. Babaev, and A. Sudbø, Phys. Rev. B 88, 220511 (2013), arXiv: 1306.2313.

    Article  ADS  Google Scholar 

  47. C. Wu, Phys. Rev. Lett. 95, 266404 (2005), arXiv: cond-mat/0409247.

    Article  ADS  PubMed  Google Scholar 

  48. E. Berg, E. Fradkin, and S. A. Kivelson, Nat. Phys. 5, 830 (2009), arXiv: 0904.1230.

    Article  CAS  Google Scholar 

  49. V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess, T. Gottschall, I. Maccari, D. Gorbunov, S. Zherlitsyn, J. Wosnitza, A. Rydh, K. Kihou, C. H. Lee, R. Sarkar, S. Dengre, J. Garaud, A. Charnukha, R. Hühne, K. Nielsch, B. Büchner, H. H. Klauss, and E. Babaev, Nat. Phys. 17, 1254 (2021).

    Article  CAS  Google Scholar 

  50. I. Shipulin, N. Stegani, I. Maccari, K. Kihou, C.-H. Lee, Y. Li, R. Hhne, H.-H. Klauss, M. Putti, F. Caglieris, E. Babaev, and V. Grinenko, arXiv: 2212.13515.

  51. R. Russell, H. P. Nair, K. M. Shen, D. G. Schlom, and J. W. Harter, arXiv: 2304.02586.

  52. J. Ge, P. Wang, Y. Xing, Q. Yin, H. Lei, Z. Wang, and J. Wang, arXiv: 2201.10352.

  53. M. Cheng, K. Sun, V. Galitski, and S. Das Sarma, Phys. Rev. B 81, 024504 (2010), arXiv: 0908.2805.

    Article  ADS  Google Scholar 

  54. C. Wu, Mod. Phys. Lett. B 23, 1 (2009), arXiv: 0901.1415.

    Article  ADS  Google Scholar 

  55. F. Hébert, Z. Cai, V. G. Rousseau, C. Wu, R. T. Scalettar, and G. G. Batrouni, Phys. Rev. B 87, 224505 (2013), arXiv: 1304.0554.

    Article  ADS  Google Scholar 

  56. R. M. Fernandes, P. P. Orth, and J. Schmalian, Annu. Rev. Condens. Matter Phys. 10, 133 (2019), arXiv: 1804.00818.

    Article  ADS  Google Scholar 

  57. M. H. Fischer, and E. Berg, Phys. Rev. B 93, 054501 (2016), arXiv: 1511.05177.

    Article  ADS  Google Scholar 

  58. C. Wu, W. V. Liu, and E. Fradkin, Phys. Rev. B 68, 115104 (2003), arXiv: cond-mat/0206248.

    Article  ADS  Google Scholar 

  59. L. H. Hu, R. X. Zhang, F. C. Zhang, and C. Wu, Phys. Rev. B 102, 235115 (2020), arXiv: 1912.09066.

    Article  ADS  CAS  Google Scholar 

  60. E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, Cambridge, 2013).

    Book  Google Scholar 

  61. C. Zhang, and M. Levin, Phys. Rev. Lett. 130, 026801 (2023), arXiv: 2206.01222.

    Article  ADS  CAS  PubMed  Google Scholar 

  62. L. Su, arXiv: 2306.02976.

  63. F. F. Song, and G. M. Zhang, Phys. Rev. Lett. 128, 195301 (2022), arXiv: 2105.05411.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. L. H. Hu, P. D. Johnson, and C. Wu, Phys. Rev. Res. 2, 022021 (2020), arXiv: 1906.01754.

    Article  CAS  Google Scholar 

  65. R. M. Fernandes, and L. Fu, arXiv: 2101.07943.

  66. S.-K. Jian, Y. Huang, and H. Yao, arXiv: 2102.02820.

  67. Y.-B. Liu, J. Zhou, C. Wu, and F. Yang, arXiv: 2301.06357.

  68. I. Herbut, A Modern Approach to Critical Phenomena (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  69. R. Shankar, Quantum Field Theory and Condensed Matter: An Introduction (Cambridge University Press, Cambridge, 2017).

    Book  Google Scholar 

  70. A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congjun Wu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

We thank Fan Yang, Yu-Bo Liu, and Jing Zhou for helpful discussions. Meng Zeng, Hong-Ye Hu, and Yi-Zhuang You are supported by a startup funding of UCSD and the National Science Foundation (Grant No. DMR-2238360). Congjun Wu is supported by the National Natural Science Foundation of China (Grant Nos. 12234016, and 12174317). This work has been supported by the New Cornerstone Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Hu, LH., Hu, HY. et al. High-order time-reversal symmetry breaking normal state. Sci. China Phys. Mech. Astron. 67, 237411 (2024). https://doi.org/10.1007/s11433-023-2287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2287-8

Navigation