Skip to main content
Log in

Hadron productions and jet substructures associated with Z0/γ in Pb+Pb collisions at the LHC

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We carry out a detailed study of medium modifications on Z0/γ+hadron correlations as well as jet substructures in association with Z0/γ in Pb+Pb collisions with \(\sqrt{s_{NN}}=5.02\ \text{TeV}\) at the LHC. We utilize the linear Boltzmann transport (LBT) model to simulate the jet-medium interactions and medium response, and an extended cluster hadronization model to investigate the non-perturbative transition of quarks and gluons into final hadrons in heavy-ion collisions. Including hadronization effect, we can well describe Z0/γ+hadrons correlations and Z0/γ-tagged jet substructures in both p+p and Pb+Pb collisions simultaneously. Medium modification on jet profile and jet fragmentation functions indicate that particles carrying a large fraction of the jet momentum are generally closely aligned with the jet axis, whereas low-momentum particles are observed to have a much broader angular distribution relative to jet axis in Pb+Pb collisions due to jet-medium interactions. In particular, we find that Z0/γ-tagged hadron correlations are sensitive to the soft particles from the dense medium and medium response, while jet-substructures show weak dependence on those soft hadrons with only a fraction of them falling inside the jet area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. N. Wang, and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. M. Gyulassy, I. Vitev, X. N. Wang, and B. W. Zhang, arXiv: nuclth/0302077.

  3. G. Y. Qin, and X. N. Wang, Int. J. Mod. Phys. E 24, 1530014 (2015), arXiv: 1511.00790.

    Article  ADS  CAS  Google Scholar 

  4. Y.-C. Liu, and X.-G. Huang, Sci. China-Phys. Mech. Astron. 65, 272011 (2022), arXiv: 2109.15301.

    Article  ADS  Google Scholar 

  5. X.-K. Dong, Y.-H. Lin, and B.-S. Zou, Sci. China-Phys. Mech. Astron. 65, 261011 (2022), arXiv: 2202.00863.

    Article  ADS  CAS  Google Scholar 

  6. L. Wang, J. W. Kang, Q. Zhang, S. Shen, W. Dai, B. W. Zhang, and E. Wang, Chin. Phys. Lett. 40, 032101 (2023), arXiv: 2211.13674.

    Article  ADS  Google Scholar 

  7. J. W. Qiu, X. P. Wang, and H. Xing, Chin. Phys. Lett. 38, 041201 (2021), arXiv: 2005.10832.

    Article  ADS  CAS  Google Scholar 

  8. R. Rapp, Nucl. Sci. Tech. 34, 63 (2023).

    Article  CAS  Google Scholar 

  9. H. Wang, and J. H. Chen, Nucl. Sci. Tech. 32, 2 (2021).

    Article  CAS  Google Scholar 

  10. S. H. Zhang, R. R. Ma, Y. F. Zhang, X. L. Chen, X. J. Li, F. Si, C. Li, M. Shao, Y. J. Sun, Z. B. Tang, and W. M. Zha, Nucl. Sci. Tech. 32, 7 (2021).

    Article  CAS  Google Scholar 

  11. H. X. Zhang, Y. X. Xiao, J. W. Kang, and B. W. Zhang, Nucl. Sci. Tech. 33, 150 (2022).

    Article  Google Scholar 

  12. I. Vitev, S. Wicks, and B. W. Zhang, J. High Energ. Phys. 2008(11), 093 (2008), arXiv: 0810.2807.

    Article  Google Scholar 

  13. I. Vitev, and B. W. Zhang, Phys. Rev. Lett. 104, 132001 (2010), arXiv: 0910.1090.

    Article  ADS  PubMed  Google Scholar 

  14. G. Y. Qin, and B. Müller, Phys. Rev. Lett. 106, 162302 (2011), arXiv: 1012.5280.

    Article  ADS  PubMed  Google Scholar 

  15. J. Casalderrey-Solana, J. G. Milhano, and U. A. Wiedemann, J. Phys. G-Nucl. Part. Phys. 38, 035006 (2011), arXiv: 1012.0745.

    Article  ADS  Google Scholar 

  16. C. Young, B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 84, 024907 (2011), arXiv: 1103.5769.

    Article  ADS  Google Scholar 

  17. Y. He, I. Vitev, and B. W. Zhang, Phys. Lett. B 713, 224 (2012), arXiv: 1105.2566.

    Article  ADS  CAS  Google Scholar 

  18. C. E. Coleman-Smith, and B. Müller, Phys. Rev. C 86, 054901 (2012), arXiv: 1205.6781.

    Article  ADS  Google Scholar 

  19. K. C. Zapp, F. Krauss, and U. A. Wiedemann, J. High Energ. Phys. 2013(3), 80 (2013).

    Article  Google Scholar 

  20. G. L. Ma, Phys. Rev. C 87, 064901 (2013), arXiv: 1304.2841.

    Article  ADS  Google Scholar 

  21. F. Senzel, O. Fochler, J. Uphoff, Z. Xu, and C. Greiner, J. Phys. G-Nucl. Part. Phys. 42, 115104 (2015), arXiv: 1309.1657.

    Article  ADS  Google Scholar 

  22. J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos, and K. Rajagopal, J. High Energ. Phys. 2014(10), 19 (2014).

    Article  Google Scholar 

  23. J. G. Milhano, and K. C. Zapp, Eur. Phys. J. C 76, 288 (2016).

    Article  ADS  Google Scholar 

  24. N. B. Chang, and G. Y. Qin, Phys. Rev. C 94, 024902 (2016), arXiv: 1603.01920.

    Article  ADS  Google Scholar 

  25. A. Majumder, and J. Putschke, Phys. Rev. C 93, 054909 (2016).

    Article  ADS  Google Scholar 

  26. L. Chen, G. Y. Qin, S. Y. Wei, B. W. Xiao, and H. Z. Zhang, Phys. Lett. B 782, 773 (2018).

    Article  ADS  CAS  Google Scholar 

  27. P. Ru, B. W. Zhang, L. Cheng, E. Wang, and W. N. Zhang, J. Phys. G-Nucl. Part. Phys. 42, 085104 (2015), arXiv: 1412.2930.

    Article  ADS  Google Scholar 

  28. W. Dai, S. Wang, S. L. Zhang, B. W. Zhang, and E. Wang, Chin. Phys. C 44, 104105 (2020), arXiv: 1806.06332.

    Article  ADS  CAS  Google Scholar 

  29. S. Y. Chen, B. W. Zhang, and E. Wang, Chin. Phys. C 44, 024103 (2020), arXiv: 1908.01518.

    Article  ADS  CAS  Google Scholar 

  30. S. L. Zhang, M. Q. Yang, and B. W. Zhang, Eur. Phys. J. C 82, 414 (2022), arXiv: 2105.04955.

    Article  ADS  CAS  Google Scholar 

  31. S. Y. Chen, W. Dai, S. L. Zhang, Q. Zhang, and B. W. Zhang, Eur. Phys. J. C 80, 865 (2020), arXiv: 2005.02892.

    Article  ADS  CAS  Google Scholar 

  32. J. Adams, et al. (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003), arXiv: nucl-ex/0305015.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. S. S. Adler, et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 072301 (2003), arXiv: nucl-ex/0304022.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. B. B. Back, et al. (PHOBOS Collaboration), Phys. Rev. C 70, 061901 (2004), arXiv: nucl-ex/0406017.

    Article  ADS  Google Scholar 

  35. K. Aamodt, et al. (ALICE Collaboration), Phys. Lett. B 696, 30 (2011), arXiv: 1012.1004.

    Article  ADS  CAS  Google Scholar 

  36. S. Chatrchyan, et al. (CMS Collaboration), Eur. Phys. J. C 72, 1945 (2012), arXiv: 1202.2554.

    Article  ADS  Google Scholar 

  37. S. L. Zhang, J. Liao, G. Y. Qin, E. Wang, and H. Xing, arXiv: 2208.08323.

  38. G. Aad, et al. (ATLAS Collaboration), Phys. Rev. Lett. 105, 252303 (2010), arXiv: 1011.6182.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. S. Chatrchyan, et al. (CMS Collaboration), Phys. Rev. C 84, 024906 (2011), arXiv: 1102.1957.

    Article  ADS  Google Scholar 

  40. L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 119, 062301 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. J. Adam, et al. (ALICE Collaboration), Phys. Lett. B 746, 1 (2015), arXiv: 1502.01689.

    Article  ADS  CAS  Google Scholar 

  42. V. Khachatryan, et al. (CMS Collaboration), Phys. Rev. C 96, 015202 (2017), arXiv: 1609.05383.

    Article  ADS  Google Scholar 

  43. G. Aad, et al. (ATLAS Collaboration), Phys. Rev. Lett. 114, 072302 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. A. Takacs, and K. Tywoniuk, J. High Energ. Phys. 2021(10), 38 (2021).

    Article  Google Scholar 

  45. W. Dai, I. Vitev, and B. W. Zhang, Phys. Rev. Lett. 110, 142001 (2013), arXiv: 1207.5177.

    Article  ADS  PubMed  Google Scholar 

  46. X. N. Wang, and Y. Zhu, Phys. Rev. Lett. 111, 062301 (2013), arXiv: 1302.5874.

    Article  ADS  PubMed  Google Scholar 

  47. L. Chen, G. Y. Qin, L. Wang, S. Y. Wei, B. W. Xiao, H. Z. Zhang, and Y. Q. Zhang, arXiv: 1803.10533.

  48. A. M. Sirunyan, et al. (CMS Collaboration), Phys. Lett. B 785, 14 (2018).

    Article  ADS  CAS  Google Scholar 

  49. A. M. Sirunyan, et al. (CMS Collaboration), Phys. Rev. Lett. 119, 082301 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. R. B. Neufeld, I. Vitev, and B. W. Zhang, Phys. Rev. C 83, 034902 (2011), arXiv: 1006.2389.

    Article  ADS  Google Scholar 

  51. R. B. Neufeld, and I. Vitev, Phys. Rev. Lett. 108, 242001 (2012), arXiv: 1202.5556.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos, and K. Rajagopal, J. High Energ. Phys. 2016(3), 53 (2016).

    Article  Google Scholar 

  53. S. L. Zhang, X. N. Wang, and B. W. Zhang, Phys. Rev. C 105, 054902 (2022), arXiv: 2103.07836.

    Article  ADS  CAS  Google Scholar 

  54. R. K. Elayavalli, and K. C. Zapp, Eur. Phys. J. C 76, 695 (2016).

    Article  ADS  Google Scholar 

  55. Z. B. Kang, I. Vitev, and H. Xing, Phys. Rev. C 96, 014912 (2017).

    Article  ADS  Google Scholar 

  56. S. L. Zhang, T. Luo, X. N. Wang, and B. W. Zhang, Phys. Rev. C 98, 021901 (2018), arXiv: 1804.11041.

    Article  ADS  CAS  Google Scholar 

  57. V. Khachatryan, et al. (CMS Collaboration), J. High Energ. Phys. 2016(1), (2016).

  58. S. Cao, and X. N. Wang, Rep. Prog. Phys. 84, 024301 (2021), arXiv: 2002.04028.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. W. Chen, S. Cao, T. Luo, L. G. Pang, and X. N. Wang, Phys. Lett. B 777, 86 (2018), arXiv: 1704.03648.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  60. P. Caucal, A. Soto-Ontoso, and A. Takacs, Phys. Rev. D 105, 114046 (2022), arXiv: 2111.14768.

    Article  ADS  CAS  Google Scholar 

  61. S. Chatrchyan, et al. (CMS Collaboration), Phys. Lett. B 730, 243 (2014).

    Article  ADS  Google Scholar 

  62. S. Chatrchyan, et al. (CMS Collaboration), Phys. Rev. C 90, 024908 (2014), arXiv: 1406.0932.

    Article  ADS  Google Scholar 

  63. G. Aad, et al. (ATLAS Collaboration), Phys. Lett. B 739, 320 (2014).

    Article  ADS  Google Scholar 

  64. S. Chatrchyan, et al. (CMS Collaboration), J. High Energ. Phys. 2012(10), (2012).

  65. A. M. Sirunyan, et al. (CMS Collaboration), Phys. Rev. Lett. 122, 152001 (2019), arXiv: 1809.08602.

    Article  ADS  CAS  PubMed  Google Scholar 

  66. A. M. Sirunyan, et al. (CMS Collaboration), Phys. Rev. Lett. 121, 242301 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. W. Chen, S. Cao, T. Luo, L. G. Pang, and X. N. Wang, Phys. Lett. B 810, 135783 (2020), arXiv: 2005.09678.

    Article  CAS  Google Scholar 

  68. N. B. Chang, Y. Tachibana, and G. Y. Qin, Phys. Lett. B 801, 135181 (2020), arXiv: 1906.09562.

    Article  CAS  Google Scholar 

  69. M. Aaboud, et al. (ATLAS Collaboration), Phys. Rev. Lett. 123, 042001 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. G. Aad, et al. (ATLAS Collaboration), Phys. Rev. Lett. 126, 072301 (2021), arXiv: 2009.10742.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. A. M. Sirunyan, et al. (CMS Collaboration), Phys. Rev. Lett. 128, 122301 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. W. Chen, Z. Yang, Y. He, W. Ke, L. G. Pang, and X. N. Wang, Phys. Rev. Lett. 127, 082301 (2021), arXiv: 2101.05422.

    Article  ADS  CAS  PubMed  Google Scholar 

  73. X. P. Duan, W. Zhao, and G. L. Ma, arXiv: 2209.05689.

  74. Z. B. Kang, K. Lee, J. Terry, and H. Xing, Phys. Lett. B 798, 134978 (2019), arXiv: 1906.07187.

    Article  CAS  Google Scholar 

  75. R. Aaij, et al. (LHCb Collaboration), Phys. Rev. Lett. 123, 232001 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. ALICE Collaboration, arXiv: 2303.00592.

  77. A. M. Sirunyan, et al. (CMS Collaboration) J. High Energ. Phys. 2021(5), (2021).

  78. G. Aad, et al. (ATLAS Collaboration), Phys. Lett. B 719, 220 (2013), arXiv: 1208.1967.

    Article  ADS  CAS  Google Scholar 

  79. B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, Phys. Rep. 97, 31 (1983).

    Article  ADS  CAS  Google Scholar 

  80. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, Comput. Phys. Commun. 191, 159 (2015), arXiv: 1410.3012.

    Article  ADS  Google Scholar 

  81. T. D. Gottschalk, Nucl. Phys. B 214, 201 (1983).

    Article  ADS  Google Scholar 

  82. T. D. Gottschalk, Nucl. Phys. B 239, 349 (1984).

    Article  ADS  Google Scholar 

  83. T. D. Gottschalk, and D. A. Morris, Nucl. Phys. B 288, 729 (1987).

    Article  ADS  Google Scholar 

  84. B. R. Webber, Nucl. Phys. B 238, 492 (1984).

    Article  ADS  Google Scholar 

  85. R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Phys. Rev. Lett. 90, 202303 (2003), arXiv: nucl-th/0301087.

    Article  ADS  CAS  PubMed  Google Scholar 

  86. V. Greco, C. M. Ko, and P. Lévai, Phys. Rev. Lett. 90, 202302 (2003), arXiv: nucl-th/0301093.

    Article  ADS  CAS  PubMed  Google Scholar 

  87. R. C. Hwa, and C. B. Yang, Phys. Rev. C 70, 024905 (2004), arXiv: nucl-th/0401001.

    Article  ADS  Google Scholar 

  88. F. L. Shao, Q. B. Xie, and Q. Wang, Phys. Rev. C 71, 044903 (2005), arXiv: nucl-th/0409018.

    Article  ADS  Google Scholar 

  89. J. H. Putschke, K. Kauder, E. Khalaj, A. Angerami, S. A. Bass, S. Cao, J. Coleman, L. Cunqueiro, T. Dai, L. Du, H. Elfner, D. Everett, W. Fan, R. J. Fries, C. Gale, Y. He, U. Heinz, B. V. Jacak, P. M. Jacobs, S. Jeon, W. Ke, M. Kordell II, A. Kumar, T. Luo, A. Majumder, M. McNelis, J. Mulligan, C. Nattrass, D. Oliinychenko, D. Pablos, L.-G. Pang, C. Park, J.-F. Paquet, G. Roland, B. Schenke, L. Schwiebert, C. Shen, C. Sirimanna, R. A. Soltz, Y. Tachibana, G. Vujanovic, X.-N. Wang, R. L. Wolpert, Y. Xu, and Z. Yang, arXiv: 1903.07706.

  90. A. Kumar, et al. (JETSCAPE Collaboration), Phys. Rev. C 102, 054906 (2020), arXiv: 1910.05481.

    Article  ADS  CAS  Google Scholar 

  91. M. Kordella, et al. (JETSCAPE Collaboration), in First results from hybrid hadronization in small and large systems: Proceedingds of the Hard Probes 2020, Austin, 2020.

  92. W. Zhao, C. M. Ko, Y. X. Liu, G. Y. Qin, and H. Song, Phys. Rev. Lett. 125, 072301 (2020), arXiv: 1911.00826.

    Article  ADS  CAS  PubMed  Google Scholar 

  93. A. Beraudo, A. De Pace, M. Monteno, M. Nardi, and F. Prino, Eur. Phys. J. C 82, 607 (2022), arXiv: 2202.08732.

    Article  ADS  CAS  Google Scholar 

  94. T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, J. High Energ. Phys. 2009(2), 007 (2009), arXiv: 0811.4622.

    Article  Google Scholar 

  95. H. Li, F. Liu, G. L. Ma, X. N. Wang, and Y. Zhu, Phys. Rev. Lett. 106, 012301 (2011), arXiv: 1006.2893.

    Article  ADS  PubMed  Google Scholar 

  96. Y. He, T. Luo, X. N. Wang, and Y. Zhu, Phys. Rev. C 91, 054908 (2015), arXiv: 1503.03313.

    Article  ADS  Google Scholar 

  97. S. Cao, T. Luo, G. Y. Qin, and X. N. Wang, Phys. Rev. C 94, 014909 (2016), arXiv: 1605.06447.

    Article  ADS  Google Scholar 

  98. F. Krauss, R. Kuhn, and G. Soff, J. High Energ. Phys. 2002(2), 044 (2002), arXiv: hep-ph/0109036.

    Article  ADS  Google Scholar 

  99. T. Gleisberg, and S. Höche, J. High Energ. Phys. 2008(12), 039 (2008), arXiv: 0808.3674.

    Article  Google Scholar 

  100. F. Cascioli, P. Maierhöfer, and S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012), arXiv: 1111.5206.

    Article  ADS  CAS  PubMed  Google Scholar 

  101. S. Höche, F. Krauss, S. Schumann, and F. Siegert, J. High Energ. Phys. 2009(5), 053 (2009), arXiv: 0903.1219.

    Article  Google Scholar 

  102. S. Höche, F. Krauss, M. Schönherr, and F. Siegert, J. High Energ. Phys. 2011(8), 123 (2011).

    Article  Google Scholar 

  103. S. Höche, F. Krauss, M. Schönherr, and F. Siegert, J. High Energ. Phys. 2013(4), 27 (2013).

    Article  Google Scholar 

  104. T. Gleisberg, and F. Krauss, Eur. Phys. J. C 53, 501 (2008), arXiv: 0709.2881.

    Article  ADS  CAS  Google Scholar 

  105. S. Schumann, and F. Krauss, J. High Energ. Phys. 2008(3), 038 (2008), arXiv: 0709.1027.

    Article  Google Scholar 

  106. S. Dulat, T. J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C. P. Yuan, Phys. Rev. D 93, 033006 (2016), arXiv: 1506.07443.

    Article  ADS  Google Scholar 

  107. X. Guo, and X. N. Wang, Phys. Rev. Lett. 85, 3591 (2000), arXiv: hep-ph/0005044.

    Article  ADS  CAS  PubMed  Google Scholar 

  108. B. W. Zhang, and X. N. Wang, Nucl. Phys. A 720, 429 (2003).

    Article  ADS  Google Scholar 

  109. B. W. Zhang, E. Wang, and X. N. Wang, Phys. Rev. Lett. 93, 072301 (2004), arXiv: nucl-th/0309040.

    Article  ADS  PubMed  Google Scholar 

  110. L. Pang, Q. Wang, and X. N. Wang, Phys. Rev. C 86, 024911 (2012), arXiv: 1205.5019.

    Article  ADS  Google Scholar 

  111. L. G. Pang, Y. Hatta, X. N. Wang, and B. W. Xiao, Phys. Rev. D 91, 074027 (2015), arXiv: 1411.7767.

    Article  ADS  Google Scholar 

  112. Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang, and S. Pal, Phys. Rev. C 72, 064901 (2005), arXiv: nucl-th/0411110.

    Article  ADS  Google Scholar 

  113. Y. He, S. Cao, W. Chen, T. Luo, L. G. Pang, and X. N. Wang, Phys. Rev. C 99, 054911 (2019), arXiv: 1809.02525.

    Article  ADS  CAS  Google Scholar 

  114. T. Luo, S. Cao, Y. He, and X. N. Wang, Phys. Lett. B 782, 707 (2018), arXiv: 1803.06785.

    Article  ADS  CAS  Google Scholar 

  115. E. Boos, M. Dobbs, W. Giele, I. Hinchliffe, J. Huston, V. Ilyin, J. Kanzaki, K. Kato, Y. Kurihara, L. Lonnblad, M. Mangano, S. Mrenna, F. Paige, E. Richter-Was, M. Seymour, T. Sjostrand, B. Webber, and D. Zeppenfeld, arXiv: hep-ph/0109068.

  116. A. Kumar, et al. (JETSCAPE Collaboration), arXiv: 2204.01163.

  117. T. Sjostrand, and M. van Zijl, Phys. Rev. D 36, 2019 (1987).

    Article  ADS  CAS  Google Scholar 

  118. M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C 72, 1896 (2012), arXiv: 1111.6097.

    Article  ADS  CAS  Google Scholar 

  119. M. Cacciari, G. P. Salam, and G. Soyez, J. High Energ. Phys. 2008(4), 063 (2008), arXiv: 0802.1189.

    Article  ADS  Google Scholar 

  120. G. Y. Ma, W. Dai, B. W. Zhang, and E. Wang, Eur. Phys. J. C 79, 518 (2019), arXiv: 1812.02033.

    Article  ADS  Google Scholar 

  121. Q. Zhang, W. Dai, L. Wang, B. W. Zhang, and E. Wang, arXiv: 2203.10742.

  122. S. Wang, J. W. Kang, W. Dai, B. W. Zhang, and E. Wang, Eur. Phys. J. A 58, 135 (2022), arXiv: 2107.12000.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan-Liang Zhang, Hongxi Xing or Ben-Wei Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030008), and the National Natural Science Foundation of China (Grant Nos. 12147131, 11935007, 12035007, and 12022512). Shan-Liang Zhang was also supported by the MOE Key Laboratory of Quark and Lepton Physics (CCNU) (Grant No. QLPL2021P01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SL., Xing, H. & Zhang, BW. Hadron productions and jet substructures associated with Z0/γ in Pb+Pb collisions at the LHC. Sci. China Phys. Mech. Astron. 66, 121012 (2023). https://doi.org/10.1007/s11433-023-2251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2251-4

Navigation