Skip to main content
Log in

Detecting gravitational wave with an interferometric seismometer array on lunar nearside

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

An Erratum to this article was published on 07 December 2023

This article has been updated

Abstract

Our Moon is by far the easiest natural, extraterrestrial celestial object for us to reach, and many space agencies, in particular the China National Space Administration, have publicized plans for manned missions there. Such high-profile projects must yield commensurate scientific outputs to justify their cost to the taxpayers. An important criterion for the selection of candidate experiments is the extent to which the Moon plays an integral and irreplaceable role, as opposed to offering only marginal advantages over Earth-orbit, space-based alternatives. In this study, we propose an experiment that excels in this regard, which considers the Moon as part of the experimental apparatus. Specifically, the Moon acts as a Weber bar-style resonant mass that responds to deci-Hertz gravitational waves (GWs). GW-excited lunar vibrations can be picked up by an array of (prefabricated on Earth and easy to transport to the Moon) small laser interferometric seismometers yielding GW detection. Such a setup would plug a gap in the GW frequency range already covered by the existing or underdevelopment detectors, and it can inform us on important astrophysics topics, such as the progenitors of Type Ia supernovae (SNe Ia) or intermediate mass black holes. We provide the instrument design as well as its deployment strategy, and we also summarize relevant science cases according to the estimated viable sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  2. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.

    Article  ADS  Google Scholar 

  3. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  4. R. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 125, 101102 (2020), arXiv: 2009.01075.

    Article  ADS  Google Scholar 

  5. M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, N. Beveridge, S. Birindelli, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, T. Bulik, E. Calloni, G. Cella, E. C. Mottin, S. Chelkowski, A. Chincarini, J. Clark, E. Coccia, C. Colacino, J. Colas, A. Cumming, L. Cunningham, E. Cuoco, S. Danilishin, K. Danzmann, G. De Luca, R. De Salvo, T. Dent, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets, V. Fafone, P. Falferi, R. Flaminio, J. Franc, F. Frasconi, A. Freise, P. Fulda, J. Gair, G. Gemme, A. Gennai, A. Giazotto, K. Glampedakis, M. Granata, H. Grote, G. Guidi, G. Hammond, M. Hannam, J. Harms, D. Heinert, M. Hendry, I. Heng, E. Hennes, S. Hild, J. Hough, S. Husa, S. Huttner, G. Jones, F. Khalili, K. Kokeyama, K. Kokkotas, B. Krishnan, M. Lorenzini, H. Lück, E. Majorana, I. Mandel, V. Mandic, I. Martin, C. Michel, Y. Minenkov, N. Morgado, S. Mosca, B. Mours, H. MüllerCEbhardt, P. Murray, R. Nawrodt, J. Nelson, R. Oshaughnessy, C. D. Ott, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, R. Poggiani, P. Popolizio, M. Prato, P. Puppo, D. Rabeling, P. Rapagnani, J. Read, T. Regimbau, H. Rehbein, S. Reid, L. Rezzolla, F. Ricci, F. Richard, A. Rocchi, S. Rowan, A. Rüdiger, B. Sassolas, B. Sathyaprakash, R. Schnabel, C. Schwarz, P. Seidel, A. Sintes, K. Somiya, F. Speirits, K. Strain, S. Strigin, P. Sutton, S. Tarabrin, A. Thüring, J. van den Brand, C. van Leewen, M. van Veggel, C. van den Broeck, A. Vecchio, J. Veitch, F. Vetrano, A. Vicere, S. Vyatchanin, B. Willke, G. Woan, P. Wolfango, and K. Yamamoto, Class. Quantum Grav. 27, 194002 (2010).

    Article  ADS  Google Scholar 

  6. D. Reitze, R. X. Adhikari, S. Ballmer, B. Barish, L. Barsotti, G. Billingsley, D. A. Brown, Y. Chen, D. Coyne, R. Eisenstein, M. Evans, P. Fritschel, E. D. Hall, A. Lazzarini, G. Lovelace, J. Read, B. S. Sathyaprakash, D. Shoemaker, J. Smith, C. Torrie, S. Vitale, R. Weiss, C. Wipf, and M. Zucker, Bull. Amer. Astronom. Soc. 51, 35 (2019).

    Google Scholar 

  7. P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti, P. Binetruy, M. Born, D. Bortoluzzi, J. Camp, C. Caprini, V. Cardoso, M. Colpi, J. Conklin, N. Cornish, C. Cutler, K. Danzmann, R. Dolesi, L. Ferraioli, V. Ferroni, E. Fitzsimons, J. Gair, L. Gesa Bote, D. Giardini, F. Gibert, C. Grimani, H. Halloin, G. Heinzel, T. Hertog, M. Hewitson, K. Holley-Bockelmann, D. Hollington, M. Hueller, H. Inchauspe, P. Jetzer, N. Karnesis, C. Killow, A. Klein, B. Klipstein, N. Korsakova, S. L. Larson, J. Livas, I. Lloro, N. Man, D. Mance, J. Martino, I. Mateos, K. McKenzie, S. T. McWilliams, C. Miller, G. Mueller, G. Nardini, G. Nelemans, M. Nofrarias, A. Petiteau, P. Pivato, E. Plagnol, E. Porter, J. Reiche, D. Robertson, N. Robertson, E. Rossi, G. Russano, B. Schutz, A. Sesana, D. Shoemaker, J. Slutsky, C. F. Sopuerta, T. Sumner, N. Tamanini, I. Thorpe, M. Troebs, M. Vallisneri, A. Vecchio, D. Vetrugno, S. Vitale, M. Volonteri, G. Wanner, H. Ward, P. Wass, W. Weber, J. Ziemer, and P. Zweifel, arXiv: 1702.00786.

  8. G. Wang, W. T. Ni, W. B. Han, S. C. Yang, and X. Y. Zhong, Phys. Rev. D 102, 024089 (2020), arXiv: 2002.12628.

    Article  ADS  Google Scholar 

  9. Z. Luo, Z. K. Guo, G. Jin, Y. Wu, and W. Hu, Results Phys. 16, 102918 (2020).

    Article  Google Scholar 

  10. J. Luo, L. S. Chen, H. Z. Duan, Y. G. Gong, S. Hu, J. Ji, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C. G. Shao, V. T. Toth, H. B. Tu, Y. Wang, Y. Wang, H. C. Yeh, M. S. Zhan, Y. Zhang, V. Zharov, and Z. B. Zhou, Class. Quantum Grav. 33, 035010 (2016), arXiv: 1512.02076.

    Article  ADS  Google Scholar 

  11. J. Weber, Phys. Rev. 117, 306 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  12. W. W. Johnson, in The moon as a gravitational wave detector, using seismometers: Proceedings of AIP Conference, Stanford, 1990. pp. 183–187.

  13. V. S. Tuman, Nat. Phys. Sci. 230, 101 (1971).

    Article  ADS  Google Scholar 

  14. J. J. Giganti, J. V. Larson, J. P. Richard, R. L. Tobias, and J. Weber, Lunar Surface Gravimeter Experiment, Final Report, Maryland University, 1977.

  15. J. R. Bates, W. W. Lauderdale, and H. Kernaghan, NASA Ref. Publ. 1036 (1979).

  16. H. J. Paik, and K. Y. Venkateswara, Adv. Space Res. 43, 167 (2009).

    Article  ADS  Google Scholar 

  17. J. Harms, in lunar gravitational wave antenna: Proceedings of 52nd Lunar and Planetary Science Conference, 2021.

  18. Z. Y. Ouyang, C. L. Li, Y. L. Zou, H. B. Zhang, C. Lü, J. Z. Liu, J. J. Liu, W. Zuo, Y. Su, W. B. Wen, W. Bian, B. C. Zhao, J. Y. Wang, J. F. Yang, J. Chang, H. Y. Wang, X. H. Zhang, S. J. Wang, M. Wang, X. Ren, L. L. Mu, D. Q. Kong, X. Q. Wang, F. Wang, L. Geng, Z. B. Zhang, L. Zheng, X. Y. Zhu, Y. C. Zheng, J. D. Li, X. D. Zou, C. Xu, S. B. Shi, Y. F. Gao, and G. N. Gao, Sci. China Earth Sci. 53, 1565 (2010).

    Article  ADS  Google Scholar 

  19. C. Zhou, Y. Jia, J. Liu, H. Li, Y. Fan, Z. Zhang, Y. Liu, Y. Jiang, B. Zhou, Z. He, J. Yang, Y. Hu, Z. Liu, L. Qin, B. Lv, Z. Fu, J. Yan, C. Wang, and Y. Zou, Adv. Space Res. 69, 823 (2022).

    Article  ADS  Google Scholar 

  20. L. Xu, Y. Zou, and Y. Jia, Chin. J. Space Sci. 38, 591 (2018).

    Article  ADS  Google Scholar 

  21. B. Wu, H. Hu, and J. Guo, Earth Planet. Sci. Lett. 391, 1 (2014).

    Article  ADS  Google Scholar 

  22. C. Li, J. Liu, X. Ren, W. Zuo, X. Tan, W. Wen, H. Li, L. Mu, Y. Su, H. Zhang, J. Yan, and Z. Ouyang, Space Sci. Rev. 190, 85 (2015).

    Article  ADS  Google Scholar 

  23. Y. Jia, Y. Zou, J. Ping, C. Xue, J. Yan, and Y. Ning, Planet. Space Sci. 162, 207 (2018).

    Article  ADS  Google Scholar 

  24. J. V. van Heijningen, J. Inst. 15, P06034 (2020), arXiv: 1909.12956.

    ADS  Google Scholar 

  25. J. Harms, and C. M. Mow-Lowry, Class. Quantum Grav. 35, 025008 (2018), arXiv: 1707.07309.

    Article  ADS  Google Scholar 

  26. K. Venkateswara, C. A. Hagedorn, M. D. Turner, T. Arp, and J. H. Gundlach, Rev. Sci. Instrum. 85, 015005 (2014), arXiv: 1401.4412.

    Article  ADS  Google Scholar 

  27. W. Z. Korth, A. Heptonstall, E. D. Hall, K. Arai, E. K. Gustafson, and R. X. Adhikari, Class. Quantum Grav. 33, 035004 (2016), arXiv: 1508.07025.

    Article  ADS  Google Scholar 

  28. C. Collette, F. Nassif, J. Amar, C. Depouhon, and S. P. Gorza, Sens. Actuat. A-Phys. 224, 72 (2015).

    Article  Google Scholar 

  29. C. M. Mow-Lowry, and D. Martynov, Class. Quantum Grav. 36, 245006 (2019), arXiv: 1801.01468.

    Article  ADS  Google Scholar 

  30. L. Carbone, S. M. Aston, R. M. Cutler, A. Freise, J. Greenhalgh, J. Heefner, D. Hoyland, N. A. Lockerbie, D. Lodhia, N. A. Robertson, C. C. Speake, K. A. Strain, and A. Vecchio, Class. Quantum Grav. 29, 115005 (2012), arXiv: 1205.5643.

    Article  ADS  Google Scholar 

  31. A. S. Ubhi, J. Smetana, T. Zhang, S. Cooper, L. Prokhorov, J. Bryant, D. Hoyland, H. Miao, and D. Martynov, Class. Quantum Grav. 39, 015006 (2022), arXiv: 2109.07880.

    Article  ADS  Google Scholar 

  32. Y. Fujii, SUMCON user’s manual, Institute for Cosmic Ray Research, University of Tokyo, 2016, https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/DocDB/ShowDocument?docid=5034.

  33. O. Gerberding, and K.-S. Isleif, Sensors 21, 1078 (2021).

    Article  Google Scholar 

  34. R. Bulow, C. Johnson, B. Bills, and P. Shearer, J. Geophys. Res. Planets 112, E09003 (2007).

    Article  ADS  Google Scholar 

  35. C. Nunn, R. F. Garcia, Y. Nakamura, A. G. Marusiak, T. Kawamura, D. Sun, L. Margerin, R. Weber, M. Drilleau, M. A. Wieczorek, A. Khan, A. Rivoldini, P. Lognonn, and P. Zhu, Space Sci. Rev. 216, 89 (2020).

    Article  ADS  Google Scholar 

  36. E. Larose, A. Khan, Y. Nakamura, and M. Campillo, Geophys. Res. Lett. 32, L16201 (2005).

    Article  ADS  Google Scholar 

  37. Y. Nakamura, G. V. Latham, H. J. Dorman, A.-B. Ibrahim, J. Koyama, and P. Horvath, in Shallow moonquakes—Depth, distribution and implications as to the present state of the lunar interior: Proceedings of Lunar and Planetary Science Conference, Houston, 1979. pp. 2299–2309.

  38. P. Lognonné, M. Le Feuvre, C. L. Johnson, and R. C. Weber, J. Geophys. Res. Planets 114, E12003 (2009).

    Article  ADS  Google Scholar 

  39. A. Khan, A. Pommier, G. A. Neumann, and K. Mosegaard, Tectonophysics 609, 331 (2013).

    Article  ADS  Google Scholar 

  40. J. P. Williams, D. A. Paige, B. T. Greenhagen, and E. Sefton-Nash, Icarus 283, 300 (2017).

    Article  ADS  Google Scholar 

  41. S. J. Cooper, C. J. Collins, A. C. Green, D. Hoyland, C. C. Speake, A. Freise, and C. M. Mow-Lowry, Class. Quantum Grav. 35, 095007 (2018), arXiv: 1710.05943.

    Article  ADS  Google Scholar 

  42. J. Watchi, S. Cooper, B. Ding, C. M. Mow-Lowry, and C. Collette, Rev. Sci. Instrum. 89, 121501 (2018).

    Article  ADS  Google Scholar 

  43. C. Z. Zhou, and P. F. Michelson, Phys. Rev. D 51, 2517 (1995).

    Article  ADS  Google Scholar 

  44. J. Harms, F. Ambrosino, L. Angelini, V. Braito, M. Branchesi, E. Brocato, E. Cappellaro, E. Coccia, M. Coughlin, R. Della Ceca, M. Della Valle, C. Dionisio, C. Federico, M. Formisano, A. Frigeri, A. Grado, L. Izzo, A. Marcelli, A. Maselli, M. Olivieri, C. Pernechele, A. Possenti, S. Ronchini, R. Serafinelli, P. Severgnini, M. Agostini, F. Badaracco, A. Bertolini, L. Betti, M. M. Civitani, C. Collette, S. Covino, S. Dall’Osso, P. D’Avanzo, R. DeSalvo, M. Di Giovanni, M. Focardi, C. Giunchi, J. van Heijningen, N. Khetan, D. Melini, G. Mitri, C. Mow-Lowry, L. Naponiello, V. Noce, G. Oganesyan, E. Pace, H. J. Paik, A. Pajewski, E. Palazzi, M. Pallavicini, G. Pareschi, R. Pozzobon, A. Sharma, G. Spada, R. Stanga, G. Tagliaferri, and R. Votta, Astrophys. J. 910, 1 (2021), arXiv: 2010.13726.

    Article  ADS  Google Scholar 

  45. S. M. Merkowitz, and W. W. Johnson, Phys. Rev. D 51, 2546 (1995).

    Article  ADS  Google Scholar 

  46. N. S. Magalhaes, W. W. Johnson, C. Frajuca, and O. D. Aguiar, Mon. Not. R. Astron. Soc. 274, 670 (1995).

    Article  ADS  Google Scholar 

  47. I. Mandel, A. Sesana, and A. Vecchio, Class. Quantum Grav. 35, 054004 (2018), arXiv: 1710.11187.

    Article  ADS  Google Scholar 

  48. M. Arca Sedda, C. P. L. Berry, K. Jani, P. Amaro-Seoane, P. Auclair, J. Baird, T. Baker, E. Berti, K. Breivik, A. Burrows, C. Caprini, X. Chen, D. Doneva, J. M. Ezquiaga, K. E. Saavik Ford, M. L. Katz, S. Kolkowitz, B. McKernan, G. Mueller, G. Nardini, I. Pikovski, S. Rajendran, A. Sesana, L. Shao, N. Tamanini, D. Vartanyan, N. Warburton, H. Witek, K. Wong, and M. Zevin, Class. Quantum Grav. 37, 215011 (2020), arXiv: 1908.11375.

    Article  ADS  Google Scholar 

  49. J. Whelan, and J. Iben Icko, Astrophys. J. 186, 1007 (1973).

    Article  ADS  Google Scholar 

  50. K. Nomoto, F. K. Thielemann, and K. Yokoi, Astrophys. J. 286, 644 (1984).

    Article  ADS  Google Scholar 

  51. I. Hachisu, M. Kato, and K. Nomoto, Astrophys. J. 470, L97 (1996).

    Article  ADS  Google Scholar 

  52. T. Plewa, A. C. Calder, and D. Q. Lamb, Astrophys. J. 612, L37 (2004), arXiv: 0405163.

    Article  ADS  Google Scholar 

  53. G. C. JordanIV, R. T. Fisher, D. M. Townsley, A. C. Calder, C. Graziani, S. Asida, D. Q. Lamb, and J. W. Truran, Astrophys. J. 681, 1448 (2008), arXiv: 0703573.

    Article  ADS  Google Scholar 

  54. A. M. Khokhlov, Astron. Astrophys. 245, 114 (1991).

    ADS  Google Scholar 

  55. R. F. Webbink, Astrophys. J. 277, 355 (1984).

    Article  ADS  Google Scholar 

  56. I. IbenJr., and A. V. Tutukov, Astrophys. J. 282, 615 (1984).

    Article  ADS  Google Scholar 

  57. Y. Sato, N. Nakasato, A. Tanikawa, K. Nomoto, K. Maeda, and I. Hachisu, Astrophys. J. 807, 105 (2015), arXiv: 1505.01646.

    Article  ADS  Google Scholar 

  58. K. J. Shen, and L. Bildsten, Astrophys. J. 785, 61 (2014), arXiv: 1305.6925.

    Article  ADS  Google Scholar 

  59. D. Falta, R. Fisher, and G. Khanna, Phys. Rev. Lett. 106, 201103 (2011), arXiv: 1011.6387.

    Article  ADS  Google Scholar 

  60. T. Kinugawa, H. Takeda, A. Tanikawa, and H. Yamaguchi, Astrophys. J. 938, 52 (2022), arXiv: 1910.01063.

    Article  ADS  Google Scholar 

  61. F. Verbunt, and S. Rappaport, Astrophys. J. 332, 193 (1988).

    Article  ADS  Google Scholar 

  62. I. R. Seitenzahl, M. Herzog, A. J. Ruiter, K. Marquardt, S. T. Ohlmann, and F. K. Röpke, Phys. Rev. D 92, 124013 (2015), arXiv: 1511.02542.

    Article  ADS  Google Scholar 

  63. C. J. Moore, R. H. Cole, and C. P. L. Berry, Class. Quantum Grav. 32, 015014 (2015), arXiv: 1408.0740.

    Article  ADS  Google Scholar 

  64. S. Shah, G. Nelemans, and M. van der Sluys, Astron. Astrophys. 553, A82 (2013), arXiv: 1303.6116.

    Article  ADS  Google Scholar 

  65. B. Willems, V. Kalogera, A. Vecchio, N. Ivanova, F. A. Rasio, J. M. Fregeau, and K. Belczynski, Astrophys. J. 665, L59 (2007), arXiv: 0705.4287.

    Article  ADS  Google Scholar 

  66. L. Landau, E. Lifshitz, and M. Hamermesh, The Classical Theory of Fields: Volume 2, Course of Theoretical Physics (Elsevier Science, Burlington, 2000).

    Google Scholar 

  67. D. Keppel, A. P. Lundgren, B. J. Owen, and H. Zhu, Phys. Rev. D 88, 063002 (2013), arXiv: 1305.5381.

    Article  ADS  Google Scholar 

  68. M. Dan, S. Rosswog, M. Brüggen, and P. Podsiadlowski, Mon. Not. R. Astron. Soc. 438, 14 (2014), arXiv: 1308.1667.

    Article  ADS  Google Scholar 

  69. E. Cappellaro, R. Evans, and M. Turatto, Astron. Astrophys. 351, 459 (1999).

    ADS  Google Scholar 

  70. R. K. Kopparapu, C. Hanna, V. Kalogera, R. OShaughnessy, G. González, P. R. Brady, and S. Fairhurst, Astrophys. J. 675, 1459 (2008), arXiv: 0706.1283.

    Article  ADS  Google Scholar 

  71. K. Izumi, and K. Jani, Handbook of Gravitational Wave Astronomy (Springer, Singapore, 2021).

    Google Scholar 

  72. M. Mezcua, Int. J. Mod. Phys. D 26, 1730021 (2017), arXiv: 1705.09667.

    Article  ADS  Google Scholar 

  73. J. Silk, and J. Arons, Astrophys. J. 200, L131 (1975).

    Article  ADS  Google Scholar 

  74. A. A. Wyller, Astrophys. J. 160, 443 (1970).

    Article  ADS  Google Scholar 

  75. J. N. Bahcall, and J. P. Ostriker, Nature 256, 23 (1975).

    Article  ADS  Google Scholar 

  76. J. Frank, and M. J. Rees, Mon. Not. R. Astron. Soc. 176, 633 (1976).

    Article  ADS  Google Scholar 

  77. A. B. Marchant, and S. L. Shapiro, Astrophys. J. 239, 685 (1980).

    Article  ADS  Google Scholar 

  78. S. F. Portegies Zwart, J. Makino, S. L. W. McMillan, and P. Hut, Astron. Astrophys. 348, 117 (1999).

    ADS  Google Scholar 

  79. P. Amaro-Seoane, J. R. Gair, M. Freitag, M. C. Miller, I. Mandel, C. J. Cutler, and S. Babak, Class. Quantum Grav. 24, R113 (2007), arXiv: astro-ph/0703495.

    Article  ADS  Google Scholar 

  80. D. A. Brown, J. Brink, H. Fang, J. R. Gair, C. Li, G. Lovelace, I. Mandel, and K. S. Thorne, Phys. Rev. Lett. 99, 201102 (2007), arXiv: gr-qc/0612060.

    Article  ADS  Google Scholar 

  81. C. L. Rodriguez, I. Mandel, and J. R. Gair, Phys. Rev. D 85, 062002 (2012), arXiv: 1112.1404.

    Article  ADS  Google Scholar 

  82. J. M. Fregeau, S. L. Larson, M. C. Miller, R. OShaughnessy, and F. A. Rasio, Astrophys. J. 646, L135 (2006), arXiv: astro-ph/0605732.

    Article  ADS  Google Scholar 

  83. P. Amaro-Seoane, Phys. Rev. D 98, 063018 (2018), arXiv: 1807.03824.

    Article  ADS  Google Scholar 

  84. S. Konstantinidis, P. Amaro-Seoane, and K. D. Kokkotas, Astron. Astrophys. 557, A135 (2013), arXiv: 1108.5175.

    Article  ADS  Google Scholar 

  85. C. J. Haster, F. Antonini, V. Kalogera, and I. Mandel, Astrophys. J. 832, 192 (2016), arXiv: 1606.07097.

    Article  ADS  Google Scholar 

  86. P. C. Peters, Phys. Rev. 136, 1224 (1964).

    Article  ADS  Google Scholar 

  87. P. C. Peters, and J. Mathews, Phys. Rev. 131, 435 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  88. S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044006 (2016), arXiv: abs/1508.07250.

    Article  ADS  Google Scholar 

  89. S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016), arXiv: 1508.07253.

    Article  ADS  Google Scholar 

  90. I. Mandel, D. A. Brown, J. R. Gair, and M. C. Miller, Astrophys. J. 681, 1431 (2008), arXiv: 0705.0285.

    Article  ADS  Google Scholar 

  91. S. V. Dhurandhar, and M. Tinto, Mon. Not. R. Astron. Soc. 234, 663 (1988).

    Article  ADS  Google Scholar 

  92. S. M. Merkowitz, Phys. Rev. D 58, 062002 (1998), arXiv: gr-qc/9712079.

    Article  ADS  Google Scholar 

  93. L. Landau, E. Lifshitz, A. Kosevich, J. Sykes, L. Pitaevskii, and W. Reid, Theory of Elasticity: Volume 7, Course of Theoretical Physics (Elsevier Science, Burlington, 1986).

    Google Scholar 

  94. N. Ashby, and J. Dreitlein, Phys. Rev. D 12, 336 (1975).

    Article  ADS  Google Scholar 

  95. M. Bianchi, E. Coccia, C. N. Colacino, V. Fafone, and F. Fucito, Class. Quantum Grav. 13, 2865 (1996), arXiv: gr-qc/9604026.

    Article  ADS  Google Scholar 

  96. M. Maggiore, Gravitational Waves, Volume 1: Theory and Experiments, Gravitational Waves (Oxford University Press, Oxford, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengyao Wang, Fan Zhang or Zong-Hong Zhu.

Additional information

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 310432103), the National Natural Science Foundation of China (Grant Nos. 12073005, 12021003, 12021003, 11920101003, and 11633001), the Interdiscipline Research Funds of Beijing Normal University, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23000000), and the Interdiscipline Research Funds of Beijing Normal University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, F., Pan, Y. et al. Detecting gravitational wave with an interferometric seismometer array on lunar nearside. Sci. China Phys. Mech. Astron. 66, 109513 (2023). https://doi.org/10.1007/s11433-023-2179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2179-9

Navigation