Skip to main content
Log in

Monogamy and polygamy for the generalized W-class states using unified-(q, s) entropy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We describe the entanglement distribution and restricted shareability of the multipartite generalized W-class states and their reduced density matrix under arbitrary partitions by using monogamy and polygamy relation based on the unified-(q, s) entropy. Firstly, we provide an analytical formula of unified-(q, s) entanglement (UE) and an analytical lower bound of unified-(q, s) entanglement of assistance (UEoA) for a reduced density matrix of a generalized W-class state. Then, we use these two analytical formulas to derive the monogamy and polygamy inequalities for a reduced density matrix of a qudit generalized W-class (GW) state. We establish two partition-dependent residual entanglements based on the new monogamy relation, which is helpful to obtain a comprehensive analysis of entanglement dynamics of generalized W-class states. Further, we investigate tighter monogamy and polygamy relations based on the power of αth (α ≥ 0) for UE and βth (β ≥ 0) for UEoA, respectively. The results show that the entanglement distribution characteristics of generalized W-class states satisfying stronger constraints can be described more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009), arXiv: quant-ph/0702225.

    Article  ADS  CAS  Google Scholar 

  2. F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett. 92, 167902 (2004), arXiv: quant-ph/0403063.

    Article  ADS  PubMed  Google Scholar 

  3. K. Chen, S. Albeverio, and S. M. Fei, Phys. Rev. Lett. 95, 040504 (2005), arXiv: quant-ph/0506136.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  4. H. P. Breuer, Phys. Rev. Lett. 97, 080501 (2006), arXiv: quant-ph/0605036.

    Article  ADS  PubMed  Google Scholar 

  5. M. L. Hu, and H. Fan, Sci. China-Phys. Mech. Astron. 63, 230322 (2020), arXiv: 1812.04385.

    Article  ADS  Google Scholar 

  6. Q. C. Wu, J. L. Zhao, Y. L. Fang, Y. Zhang, D. X. Chen, C. P. Yang, and F. Nori, Sci. China-Phys. Mech. Astron. 66, 240312 (2023), arXiv: 2301.07314.

    Article  ADS  Google Scholar 

  7. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000), arXiv: quant-ph/9907047.

    Article  ADS  Google Scholar 

  8. B. M. Terhal, IBM J. Res. Dev. 48, 71 (2004).

    Article  Google Scholar 

  9. J. M. Renes, and M. Grassl, Phys. Rev. A 74, 022317 (2006), arXiv: quant-ph/0505061.

    Article  ADS  Google Scholar 

  10. A. J. Coleman, and V. I. Yukalov, Lecture Notes in Chemistry Vol. 72 (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  11. X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, Nat. Phys. 7, 399 (2011), arXiv: 1008.4116.

    Article  CAS  Google Scholar 

  12. G. Gour, S. Bandyopadhyay, and B. C. Sanders, J. Math. Phys. 48, 012108 (2007), arXiv: quant-ph/0606168.

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Gour, Phys. Rev. A 71, 012318 (2005), arXiv: quant-ph/0410148.

    Article  ADS  MathSciNet  Google Scholar 

  14. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998), arXiv: quant-ph/9709029.

    Article  ADS  CAS  Google Scholar 

  15. C. Eltschka, and J. Siewert, J. Phys. A-Math. Theor. 47, 424005 (2014), arXiv: 1402.6710.

    Article  ADS  Google Scholar 

  16. J. S. Kim, Phys. Rev. A 81, 062328 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. S. Kim, and B. C. Sanders, J. Phys. A-Math. Theor. 43, 445305 (2010), arXiv: 0911.5180.

    Article  Google Scholar 

  18. J. S. Kim, and B. C. Sanders, J. Phys. A-Math. Theor. 44, 295303 (2011), arXiv: 1104.1675.

    Article  Google Scholar 

  19. J. S. Kim, Phys. Rev. A 85, 032335 (2012).

    Article  ADS  Google Scholar 

  20. T. J. Osborne, and F. Verstraete, Phys. Rev. Lett. 96, 220503 (2006), arXiv: quant-ph/0502176.

    Article  ADS  PubMed  Google Scholar 

  21. G. Gour, D. A. Meyer, and B. C. Sanders, Phys. Rev. A 72, 042329 (2005), arXiv: quant-ph/0505091.

    Article  ADS  Google Scholar 

  22. Y. K. Bai, Y. F. Xu, and Z. D. Wang, Phys. Rev. Lett. 113, 100503 (2014), arXiv: 1401.3205.

    Article  ADS  PubMed  Google Scholar 

  23. X. N. Zhu, and S. M. Fei, Phys. Rev. A 90, 024304 (2014), arXiv: 1409.1022.

    Article  ADS  Google Scholar 

  24. J. S. Kim, A. Das, and B. C. Sanders, Phys. Rev. A 79, 012329 (2009).

    Article  ADS  Google Scholar 

  25. H. He, and G. Vidal, Phys. Rev. A 91, 012339 (2015), arXiv: 1401.5843.

    Article  ADS  MathSciNet  Google Scholar 

  26. Z. X. Jin, and S. M. Fei, Quantum Inf. Process. 16, 77 (2017), arXiv: 1702.03405.

    Article  ADS  Google Scholar 

  27. Z. X. Jin, J. Li, T. Li, and S. M. Fei, Phys. Rev. A 97, 032336 (2018), arXiv: 1803.11355.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. J. S. Kim, Phys. Rev. A 97, 012334 (2018).

    Article  ADS  CAS  Google Scholar 

  29. X. N. Zhu, and S. M. Fei, Quantum Inf. Process. 18, 23 (2019), arXiv: 1812.01134.

    Article  ADS  Google Scholar 

  30. L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Commun. Theor. Phys. 71, 545 (2019), arXiv: 1906.03571.

    Article  ADS  Google Scholar 

  31. Z. X. Jin, and S. M. Fei, Quantum Inf. Process. 18, 21 (2019), arXiv: 1812.00205.

    Article  ADS  Google Scholar 

  32. Z. X. Jin, S. M. Fei, and C. F. Qiao, Quantum Inf. Process. 18, 105 (2019), arXiv: 1902.07441.

    Article  ADS  Google Scholar 

  33. Z. X. Jin, S. M. Fei, and C. F. Qiao, Quantum Inf. Process. 19, 101 (2020), arXiv: 2002.04456.

    Article  ADS  Google Scholar 

  34. W. W. Liu, Z. F. Yang, and S. M. Fei, Int. J. Theor. Phys. 60, 4177 (2021), arXiv: 2112.15410.

    Article  Google Scholar 

  35. M. Zhang, and N. Jing, Laser Phys. Lett. 19, 085205 (2022), arXiv: 2209.01729.

    Article  ADS  Google Scholar 

  36. H. Li, T. Gao, and F. Yan, Quantum Inf. Process. 21, 357 (2022), arXiv: 2205.11972.

    Article  ADS  Google Scholar 

  37. X. Zhang, N. Jing, M. Liu, and H. Ma, Phys. Scr. 98, 035106 (2023), arXiv: 2302.08534.

    Article  ADS  Google Scholar 

  38. Y. H. Tao, K. Zheng, Z. X. Jin, and S. M. Fei, Mathematics 11, 1159 (2023).

    Article  Google Scholar 

  39. B. Xie, M. J. Zhao, and B. Li, Quantum Inf. Process. 22, 124 (2023), arXiv: 2302.13601.

    Article  ADS  Google Scholar 

  40. Y. Guo, and L. Zhang, Phys. Rev. A 101, 032301 (2020), arXiv: 1908.08218.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. Y. Guo, L. Huang, and Y. Zhang, Quantum Sci. Technol. 6, 045028 (2021), arXiv: 2103.00924.

    Article  ADS  Google Scholar 

  42. Y. Guo, Entropy 24, 355 (2022), arXiv: 2109.01577.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Y. Guo, and L. Huang, Phys. Rev. A 107, 042409 (2023), arXiv: 2211.07952.

    Article  ADS  CAS  Google Scholar 

  44. Y. C. Ou, Phys. Rev. A 75, 034305 (2007), arXiv: quant-ph/0612127.

    Article  ADS  Google Scholar 

  45. C. Lancien, S. Di Martino, M. Huber, M. Piani, G. Adesso, and A. Winter, Phys. Rev. Lett. 117, 060501 (2016), arXiv: 1604.02189.

    Article  ADS  PubMed  Google Scholar 

  46. M. Christandl, and A. Winter, J. Math. Phys. 45, 829 (2004), arXiv: quant-ph/0308088.

    Article  ADS  MathSciNet  Google Scholar 

  47. J. S. Kim, and B. C. Sanders, J. Phys. A-Math. Theor. 41, 495301 (2008), arXiv: 0805.1690.

    Article  Google Scholar 

  48. B. C. Sanders, and J. S. Kim, Appl. Math. Inf. Sci 4, 281 (2010).

    MathSciNet  Google Scholar 

  49. J. H. Choi, and J. S. Kim, Phys. Rev. A 92, 042307 (2015), arXiv: 1508.07673.

    Article  ADS  Google Scholar 

  50. J. S. Kim, Phys. Rev. A 93, 032331 (2016).

    Article  ADS  Google Scholar 

  51. Y. Guo, and G. Gour, Phys. Rev. A 99, 042305 (2019), arXiv: 1809.08532.

    Article  ADS  CAS  Google Scholar 

  52. X. Shi, and L. Chen, Phys. Rev. A 101, 032344 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  53. Y. Liang, Z. J. Zheng, and C. J. Zhu, Phys. Rev. A 102, 062428 (2020), arXiv: 2010.16311.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  54. L. M. Lai, S. M. Fei, and Z. X. Wang, J. Phys. A-Math. Theor. 54, 425301 (2021), arXiv: 2109.11272.

    Article  Google Scholar 

  55. Y. Luo, F. G. Zhang, and Y. Li, Sci. Rep. 7, 1122 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. J. S. Kim, Sci. Rep. 8, 12245 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. M. M. Zhang, N. Jing, and H. Zhao, Quantum Inf. Process. 21, 136 (2022), arXiv: 2205.06394.

    Article  ADS  Google Scholar 

  58. Y. Y. Ren, Z. X. Wang, and S. M. Fei, Laser Phys. Lett. 18, 115204 (2021), arXiv: 2110.11565.

    Article  ADS  Google Scholar 

  59. X. Yang, Y. H. Yang, and M. X. Luo, Phys. Rev. A 105, 062402 (2022), arXiv: 2205.08801.

    Article  ADS  CAS  Google Scholar 

  60. Z. X. Man, Y. J. Xia, and N. B. An, New J. Phys. 12, 033020 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  61. A. Uhlmann, Phys. Rev. A 62, 032307 (2000), arXiv: quant-ph/9909060.

    Article  ADS  MathSciNet  Google Scholar 

  62. C. S. Yu, and H. S. Song, Phys. Rev. A 77, 032329 (2008), arXiv: 0803.2954.

    Article  ADS  MathSciNet  Google Scholar 

  63. A. E. Rastegin, J. Stat. Phys. 143, 1120 (2011), arXiv: 1012.5356.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  64. V. Vedral, and M. B. Plenio, Phys. Rev. A 57, 1619 (1998), arXiv: quant-ph/9707035.

    Article  ADS  CAS  Google Scholar 

  65. S. Hill, and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997), arXiv: quant-ph/9703041.

    Article  ADS  CAS  Google Scholar 

  66. M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005), arXiv: quant-ph/0505071.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12175147, 12075205, and T2121001), and Zhejiang Provincial Natural Science Foundation of China (Grant No. Z24A050006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Xie, B., Zhang, Z. et al. Monogamy and polygamy for the generalized W-class states using unified-(q, s) entropy. Sci. China Phys. Mech. Astron. 67, 210312 (2024). https://doi.org/10.1007/s11433-023-2174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2174-9

Navigation