Skip to main content
Log in

Discovery of two rotational modulation periods from a young hierarchical triple system

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

GW Ori is a young hierarchical triple system located in A Orionis, consisting of a binary (GW Ori A and B), a tertiary star (GW Ori C) and a rare circumtriple disk. Due to the limited data with poor accuracy, several short-period signals were detected in this system, but the values from different studies are not fully consistent. As one of the most successful transiting surveys, the transiting exoplanet survey satellite (TESS) provides an unprecedented opportunity to make a comprehensive periodic analysis of GW Ori. In this work we discover two significant modulation signals by analyzing the light curves of GW Ori’s four observations from TESS, i.e., (3.02 ± 0.15) and (1.92 ± 0.06)d, which are very likely to be the rotational periods caused by starspot modulation on the primary and secondary components, respectively. We calculate the inclinations of GW Ori A and B according to the two rotational periods. The results suggest that the rotational plane of GW Ori A and B and the orbital plane of the binary are almost coplanar. We also discuss the aperiodic features in the light curves; these may be related to unstable accretion. The light curves of GW Ori also include a third (possible) modulation signal with a period of (2.51±0.09)d, but the third is neither quite stable nor statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Calvet, J. Muzerolle, C. Briceño, J. Hernández, L. Hartmann, J. L. Saucedo, and K. D. Gordon, Astrophys. J. 128, 1294 (2004).

    Google Scholar 

  2. R. L. Smart, et al. (Gaia Collaboration), Astron. Astrophys. 649, A6 (2021).

    Article  Google Scholar 

  3. M. Fang, A. Sicilia-Aguilar, V. Roccatagliata, D. Fedele, T. Henning, C. Eiroa, and A. Müller, Astron. Astrophys. 570, A118 (2014).

    Article  ADS  Google Scholar 

  4. L. Prato, D. Ruíz-Rodríguez, and L. H. Wasserman, Astrophys. J. 852, 38 (2018).

    Article  ADS  Google Scholar 

  5. R. D. Mathieu, F. C. Adams, and D. W. Latham, Astron. J. 101, 2184 (1991).

    Article  ADS  Google Scholar 

  6. I. Czekala, S. M. Andrews, G. Torres, J. E. Rodriguez, E. L. N. Jensen, K. G. Stassun, D. W. Latham, D. J. Wilner, M. A. Gully-Santiago, K. N. Grankin, M. B. Lund, R. B. Kuhn, D. J. Stevens, R. J. Siverd, D. James, B. S. Gaudi, B. J. Shappee, and T. W. S. Holoien, Astrophys. J. 851, 132 (2017).

    Article  ADS  Google Scholar 

  7. J. P. Berger, J. D. Monnier, R. Millan-Gabet, S. Renard, E. Pedretti, W. Traub, C. Bechet, M. Benisty, N. Carleton, P. Haguenauer, P. Kern, P. Labeye, F. Longa, M. Lacasse, F. Malbet, K. Perraut, S. Ragland, P. Schloerb, P. A. Schuller, and E. Thiébaut, Astron. Astrophys. 529, L1 (2011).

    Article  ADS  Google Scholar 

  8. S. Kraus, A. Kreplin, A. K. Young, M. R. Bate, J. D. Monnier, T. J. Harries, H. Avenhaus, J. Kluska, A. S. E. Laws, E. A. Rich, M. Willson, A. N. Aarnio, F. C. Adams, S. M. Andrews, N. Anugu, J. Bae, T. ten Brummelaar, N. Calvet, M. Curé, C. L. Davies, J. Ennis, C. Espaillat, T. Gardner, L. Hartmann, S. Hinkley, A. Labdon, C. Lanthermann, J. B. LeBouquin, G. H. Schaefer, B. R. Setterholm, D. Wilner, and Z. Zhu, Science 369, 1233 (2020).

    Article  ADS  Google Scholar 

  9. M. Fang, A. Sicilia-Aguilar, D. Wilner, Y. Wang, V. Roccatagliata, D. Fedele, and J. Z. Wang, Astron. Astrophys. 603, A132 (2017).

    Article  ADS  Google Scholar 

  10. J. Bi, N. van der Marel, R. Dong, T. Muto, R. G. Martin, J. L. Small-wood, J. Hashimoto, H. B. Liu, H. Nomura, Y. Hasegawa, M. Takami, M. Konishi, M. Momose, K. D. Kanagawa, A. Kataoka, T. Ono, M. L. Sitko, S. Z. Takahashi, K. Tomida, and T. Tsukagoshi, Astrophys. J. Lett. 895, L18 (2020).

    Article  ADS  Google Scholar 

  11. J. Bouvier, Astron. J. 99, 946 (1990).

    Article  ADS  Google Scholar 

  12. J. Bouvier, C. Bertout, W. Benz, and M. Mayor, Astron. Astrophys. 165, 110 (1986).

    ADS  Google Scholar 

  13. J. Bouvier, and C. Bertout, Astron. Astrophys. 211, 99 (1989).

    ADS  Google Scholar 

  14. M. Zechmeister, and M. Kürster, Astron. Astrophys. 496, 577 (2009).

    Article  ADS  Google Scholar 

  15. R. B. Kuhn, J. E. Rodriguez, K. A. Collins, M. B. Lund, R. J. Siverd, K. D. Colón, J. Pepper, K. G. Stassun, P. A. Cargile, D. J. James, K. Penev, G. Zhou, D. Bayliss, T. G. Tan, I. A. Curtis, S. Udry, D. Seg-ransan, D. Mawet, S. Dhital, J. Soutter, R. Hart, B. Carter, B. S. Gaudi, G. Myers, T. G. Beatty, J. D. Eastman, D. E. Reichart, J. B. Haislip, J. Kielkopf, A. Bieryla, D. W. Latham, E. L. N. Jensen, T. E. Oberst, and D. J. Stevens, Mon. Not. R. Astron. Soc. 459, 4281 (2016).

    Article  ADS  Google Scholar 

  16. N. R. Lomb, Astrophys. Space Sci. 39, 447 (1976).

    Article  ADS  Google Scholar 

  17. J. D. Scargle, Astrophys. J. 263, 835 (1982).

    Article  ADS  Google Scholar 

  18. Y. K. Tang, N. Gai, Z. K. Li, H. L. Yang, and W. H. Dong, Acta Astron. Sin. 62, 39 (2021).

    ADS  Google Scholar 

  19. C. E. Brasseur, C. Phillip, S. W. Fleming, S. E. Mullally, and R. L. White, Astrocut: Tools for creating cutouts of TESS images, Astrophysics Source Code Library, ascl:1905.007 (2019).

  20. J. V. d. M. Cardoso, et al. (Lightkurve Collaboration), Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library (2018).

  21. W. J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, D. Caldwell, J. Caldwell, J. Christensen-Dalsgaard, W. D. Cochran, E. DeVore, E. W. Dunham, A. K. Dupree, T. N. Gautier III, J. C. Geary, R. Gilliland, A. Gould, S. B. Howell, J. M. Jenkins, Y. Kondo, D. W. Latham, G. W. Marcy, S. Meibom, H. Kjeldsen, J. J. Lissauer, D. G. Monet, D. Morrison, D. Sasselov, J. Tarter, A. Boss, D. Brownlee, T. Owen, D. Buzasi, D. Charbonneau, L. Doyle, J. Fortney, E. B. Ford, M. J. Holman, S. Seager, J. H. Steffen, W. F. Welsh, J. Rowe, H. Anderson, L. Buch-have, D. Ciardi, L. Walkowicz, W. Sherry, E. Horch, H. Isaacson, M. E. Everett, D. Fischer, G. Torres, J. A. Johnson, M. Endl, P. MacQueen, S. T. Bryson, J. Dotson, M. Haas, J. Kolodziejczak, J. Van Cleve, H. Chandrasekaran, J. D. Twicken, E. V. Quintana, B. D. Clarke, C. Allen, J. Li, H. Wu, P. Tenenbaum, E. Verner, F. Bruhweiler, J. Barnes, and A. Prsa, Science 327, 977 (2010).

    Article  ADS  Google Scholar 

  22. C. X. Huang, A. Vanderburg, A. Pál, L. Sha, L. Yu, W. Fong, M. Faus-naugh, A. Shporer, N. Guerrero, R. Vanderspek, and G. Ricker, Res. Notes Am. Astron. Soc. 4, 204 (2020).

    ADS  Google Scholar 

  23. A. Savitzky, and M. J. E. Golay, Anal. Chem. 36, 1627 (1964).

    Article  ADS  Google Scholar 

  24. S. Czesla, S. Schröter, C. P. Schneider, K. F. Huber, F. Pfeifer, D. T. Andreasen, and M. Zechmeister, PyA: Python astronomy-related packages, Astrophysics Source Code Library (2019).

  25. G. Foster, Astron. J. 112, 1709 (1996).

    Article  ADS  Google Scholar 

  26. M. Schulz, and M. Mudelsee, Comput. Geosci.s 28, 421 (2002).

    Article  ADS  Google Scholar 

  27. A. M. Cody, J. Stauffer, A. Baglin, G. Micela, L. M. Rebull, E. Flaccomio, M. Morales-Calderón, S. Aigrain, J. Bouvier, L. A. Hillenbrand, R. Gutermuth, I. Song, N. Turner, S. H. P. Alencar, K. Zwintz, P. Plavchan, J. Carpenter, K. Findeisen, S. Carey, S. Terebey, L. Hart-mann, N. Calvet, P. Teixeira, F. J. Vrba, S. Wolk, K. Covey, K. Poppenhaeger, H. M. Günther, J. Forbrich, B. Whitney, L. Affer, W. Herbst, J. Hora, D. Barrado, J. Holtzman, F. Marchis, K. Wood, M. M. Guimarães, J. Lillo Box, E. Gillen, A. McQuillan, C. Espaillat, L. Allen, P. D’Alessio, and F. Favata, Astron. J. 147, 82 (2014).

    Article  ADS  Google Scholar 

  28. T. Mitnyan, T. Borkovits, S. A. Rappaport, A. Pál, and P. F. L. Maxted, Mon. Not. R. Astron. Soc. 498, 6034 (2020).

    Article  ADS  Google Scholar 

  29. Y. Pan, J.-N. Fu, W. Zong, X. Zhang, J. Wang, and C. Li, Astronphys. J. 905, 67 (2020).

    Article  ADS  Google Scholar 

  30. L. A. Balona, J. A. Guzik, K. Uytterhoeven, J. C. Smith, P. Tenenbaum, and J. D. Twicken, Mon. Not. R. Astron. Soc. 415, 3531 (2011).

    Article  ADS  Google Scholar 

  31. X. Zhang, X. Chen, H. Zhang, J. Fu, and Y. Li, Astrophys. J. 895, 124 (2020).

    Article  ADS  Google Scholar 

  32. A. Prša, N. Batalha, R. W. Slawson, L. R. Doyle, W. F. Welsh, J. A. Orosz, S. Seager, M. Rucker, K. Mjaseth, S. G. Engle, K. Conroy, J. Jenkins, D. Caldwell, D. Koch, and W. Borucki, Astron. J. 141, 83 (2011).

    Article  ADS  Google Scholar 

  33. J. C. Lurie, K. Vyhmeister, S. L. Hawley, J. Adilia, A. Chen, J. R. A. Davenport, M. Jurić, M. Puig-Holzman, and K. L. Weisenburger, Astron. J. 154, 250 (2017).

    Article  ADS  Google Scholar 

  34. G. Handler, and R. R. Shobbrook, Mon. Not. R. Astron. Soc. 333, 251 (2002).

    Article  ADS  Google Scholar 

  35. B. Finociety, J. F. Donati, B. Klein, B. Zaire, L. Lehmann, C. Moutou, J. Bouvier, S. H. P. Alencar, L. Yu, K. Grankin, É. Artigau, R. Doyon, X. Delfosse, P. Fouqué, G. Hébrard, M. Jardine, Á. Kóspál, and F. Ménard, Mon. Not. R. Astron. Soc. 508, 3427 (2021).

    Article  ADS  Google Scholar 

  36. M. A. Gully-Santiago, G. J. Herczeg, I. Czekala, G. Somers, K. Grankin, K. R. Covey, J. F. Donati, S. H. P. Alencar, G. A. J. Hussain, B. J. Shappee, G. N. Mace, J. J. Lee, T. W. S. Holoien, J. Jose, and C. F. Liu, Astrophys. J. 836, 200 (2017).

    Article  ADS  Google Scholar 

  37. L. I. Biddle, C. M. Johns-Krull, J. Llama, L. Prato, and B. A. Skiff, Astrophys. J. 853, L34 (2018).

    Article  ADS  Google Scholar 

  38. E. H. L. Bodman, A. C. Quillen, M. Ansdell, M. Hippke, T. S. Boyajian, E. E. Mamajek, E. G. Blackman, A. Rizzuto, and J. H. Kastner, Mon. Not. R. Astron. Soc. 470, 202 (2017).

    Article  ADS  Google Scholar 

  39. J. A. Graham, Pub. Astron. Soc. Pacific 104, 479 (1992).

    Article  ADS  Google Scholar 

  40. J. Stauffer, A. M. Cody, P. McGinnis, L. Rebull, L. A. Hillenbrand, N. J. Turner, J. Carpenter, P. Plavchan, S. Carey, S. Terebey, M. Morales-Calderón, S. H. P. Alencar, J. Bouvier, L. Venuti, L. Hartmann, N. Calvet, G. Micela, E. Flaccomio, I. Song, R. Gutermuth, D. Barrado, F. J. Vrba, K. Covey, D. Padgett, W. Herbst, E. Gillen, W. Lyra, M. M. Guimaraes, H. Bouy, and F. Favata, Astron. J. 149, 130 (2015).

    Article  ADS  Google Scholar 

  41. F. Concha-Ramírez, M. J. C. Wilhelm, and S. Portegies Zwart, Mon. Not. R. Astron. Soc. 520, 6159 (2023).

    Article  ADS  Google Scholar 

  42. S. Ceppi, N. Cuello, G. Lodato, C. Clarke, C. Toci, and D. J. Price, Mon. Not. R. Astron. Soc. 514, 906 (2022).

    Article  ADS  Google Scholar 

  43. J. L. Smallwood, R. Nealon, C. Chen, R. G. Martin, J. Bi, R. Dong, and C. Pinte, Mon. Not. R. Astron. Soc. 508, 392 (2021).

    Article  ADS  Google Scholar 

  44. B. Reipurth, and S. Mikkola, Nature 492, 221 (2012).

    Article  ADS  Google Scholar 

  45. K. El-Badry, H. W. Rix, H. Tian, G. Duchêne, and M. Moe, Mon. Not. R. Astron. Soc. 489, 5822 (2019).

    Article  ADS  Google Scholar 

  46. E. F. Guinan, Rotation Periods of the Old Solar-type Stars: Alpha Cen A, B. and Beta Hydri, IUE Proposal ID RPREG, Villanova University (1995).

  47. J. E. Jay, E. F. Guinan, N. D. Morgan, S. Messina, and D. Jassour, in A Rotation and Stellar Activity of the Stars of the a Centauri Triple Star System: Proceedings of the 189th American Astronomical Society Meeting Abstracts, Toronto, 1997, 120.04.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Jun Tian or Peng Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11873034, U2031202, and 12203029), the Department of Science and Technology of Hubei Province for the Outstanding Youth Fund (Grant No. 2019CFA087), the Cultivation Project for LAMOST Scientific Payoff and Research Achievement of CAMS-CAS, and the science research grants from the China Manned Space Project (Grant No. CMS-CSST-2021-A08) and CSST Milky Way and Nearby Galaxies Survey on Dust and Extinction Project (Grant No. CMS-CSST-2021-A09). Funding for the TESS mission is provided by NASA’s Science Mission directorate. The data supporting this article will be shared upon reasonable request sent to the corresponding author. We thank Feng Wang, Jiao Li, Yang Pan, Jian-Ning Fu, Xiao-Bin Zhang, and Sheng-Hong Gu for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YT., Tian, HJ., Fang, M. et al. Discovery of two rotational modulation periods from a young hierarchical triple system. Sci. China Phys. Mech. Astron. 66, 299514 (2023). https://doi.org/10.1007/s11433-023-2151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2151-1

Navigation