Skip to main content
Log in

Optical experimental solution for the multiway number partitioning problem and its application to computing power scheduling

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum computing is an emerging technology that is expected to realize an exponential increase in computing power. Recently, its theoretical foundation and application scenarios have been extensively researched and explored. In this work, we propose efficient quantum algorithms suitable for solving computing power scheduling problems in the cloud-rendering domain, which can be viewed mathematically as a generalized form of a typical NP-complete problem, i.e., a multiway number partitioning problem. In our algorithm, the matching pattern between tasks and computing resources with the shortest completion time or optimal load balancing is encoded into the ground state of the Hamiltonian; it is then solved using the optical coherent Ising machine, a practical quantum computing device with at least 100 qubits. The experimental results show that the proposed quantum scheme can achieve significant acceleration and save 97% of the time required to solve combinatorial optimization problems compared with classical algorithms. This demonstrates the computational advantages of optical quantum devices in solving combinatorial optimization problems. Our algorithmic and experimental work will advance the utilization of quantum computers to solve specific NP problems and will broaden the range of possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Chem. Rev. 119, 10856 (2019).

    Article  Google Scholar 

  2. D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia, and Y. Alexeev, arXiv: 2201.02773.

  3. F. Tennie, and T. Palmer, arXiv: 2210.17460.

  4. S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, Rep. Prog. Phys. 85, 104001 (2022), arXiv: 2112.07491.

    Article  ADS  Google Scholar 

  5. R. P. Feynman, Simulating Physics with Computers: Feynman and Computation (CRC Press, Boca Raton, 2018), pp. 133–153.

    Book  Google Scholar 

  6. P. Benioff, J. Stat. Phys. 22, 563 (1980).

    Article  ADS  Google Scholar 

  7. S. Lloyd, Science 273, 1073 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. W. Shor, SIAM Rev. 41, 303 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000), arXiv: quant-ph/0003004.

    Article  ADS  Google Scholar 

  10. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997), arXiv: quant-ph/9706033.

    Article  ADS  Google Scholar 

  11. G. L. Long, Phys. Rev. A 64, 022307 (2001), arXiv: quant-ph/0106071.

    Article  ADS  Google Scholar 

  12. P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014), arXiv: 1307.0471.

    Article  ADS  Google Scholar 

  13. H. Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, Nat. Commun. 12, 2631 (2021), arXiv: 2011.01938.

    Article  ADS  Google Scholar 

  14. A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science 309, 1704 (2005), arXiv: quant-ph/0604193.

    Article  ADS  Google Scholar 

  15. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Horstmann, B. Reznik, S. Fagnocchi, and J. I. Cirac, Phys. Rev. Lett. 104, 250403 (2010), arXiv: 0904.4801.

    Article  ADS  Google Scholar 

  17. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    Article  ADS  Google Scholar 

  18. H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Science 370, 1460 (2020), arXiv: 2012.01625.

    Article  ADS  Google Scholar 

  19. Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 127, 180501 (2021), arXiv: 2106.14734.

    Article  ADS  Google Scholar 

  20. Q. Zhu, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Sci. Bull. 67, 240 (2022), arXiv: 2109.03494.

    Article  Google Scholar 

  21. J. Choi, S. Oh, and J. Kim, Appl. Sci. 10, 7116 (2020).

    Article  Google Scholar 

  22. J. Kim, Y. Kwak, S. Jung, and J.-H. Kim, in Quantum scheduling for millimeter-wave observation satellite constellation: 2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS) (IEEE, Osaka, 2021), pp. 1–5.

    Google Scholar 

  23. K. Ikeda, Y. Nakamura, and T. S. Humble, Sci. Rep. 9, 12837 (2019), arXiv: 1904.12139.

    Article  ADS  Google Scholar 

  24. A. Crispin, and A. Syrichas, in Quantum annealing algorithm for vehicle scheduling: 2013 IEEE International Conference on Systems, Man, and Cybernetics (IEEE, Manchester, 2013), pp. 3523–3528.

    Google Scholar 

  25. T. Tran, M. Do, E. Rieffel, J. Frank, Z. Wang, B. O’Gorman, D. Venturelli, and J. Beck, in A hybrid quantum-classical approach to solving scheduling problems: Proceedings of the International Symposium on Combinatorial Search, volume 7 (Tarrytown, 2016), pp. 98–106.

  26. T. Stollenwerk, E. Lobe, and M. Jung, in Flight gate assignment with a quantum annealer: Quantum Technology and Optimization Problems: First International Workshop, QTOP 2019, Munich, Germany, March 18, 2019 (Springer, Cham, 2019), pp. 99–110.

    Google Scholar 

  27. T. Zheng, and M. Yamashiro, Int. J. Adv. Manuf. Technol. 49, 643 (2010).

    Article  Google Scholar 

  28. D. Venturelli, D. Marchand, and G. Rojo, in Job shop scheduling solver based on quantum annealing: Proceedings of ICAPS-16 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling (COPLAS) (London, 2016), pp. 25–34.

  29. K. Kurowski, J. Wȩglarz, M. Subocz, R. Różycki, and G. Waligóra, in Hybrid quantum annealing heuristic method for solving job shop scheduling problem: Computational ScienceICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part VI 20 (Springer, Cham, 2020), pp. 502–515.

    Google Scholar 

  30. S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen, F. Neukart, and T. Bäck, in Multi-car paint shop optimization with quantum annealing: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, Broomfield, 2021), pp. 35–41.

    Google Scholar 

  31. A. Pakhomchik, S. Yudin, M. Perelshtein, A. Alekseyenko, and S. Yarkoni, arXiv: 2205.04844.

  32. M. Geitz, C. Grozea, W. Steigerwald, R. Stöhr, and A. Wolf, in Solving the extended job shop scheduling problem with agvsClassical and quantum approaches: Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20–23, 2022, Proceedings (Springer, Cham, 2022), pp. 120–137.

    Google Scholar 

  33. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, Commun. ACM 53, 50 (2010).

    Article  Google Scholar 

  34. S. Singh, and I. Chana, J. Grid. Comput. 14, 217 (2016).

    Article  Google Scholar 

  35. M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, J. Network Comput. Appl. 143, 1 (2019).

    Article  Google Scholar 

  36. S. K. Sahni, J. ACM 23, 116 (1976).

    Article  Google Scholar 

  37. M. R. Garey, and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (W. H. Freeman, New York, 1980).

    MATH  Google Scholar 

  38. H. De Raedt, K. Michielsen, K. De Raedt, and S. Miyashita, Phys. Lett. A 290, 227 (2001).

    Article  MathSciNet  Google Scholar 

  39. T. Graß, D. Raventós, B. Juliá-Díaz, C. Gogolin, and M. Lewenstein, Nat. Commun. 7, 11524 (2016), arXiv: 1507.07863.

    Article  ADS  Google Scholar 

  40. L. Asproni, D. Caputo, B. Silva, G. Fazzi, and M. Magagnini, Quantum Mach. Intell. 2, 4 (2020).

    Article  Google Scholar 

  41. G. Anikeeva, O. Marković, V. Borish, J. A. Hines, S. V. Rajagopal, E. S. Cooper, A. Periwal, A. Safavi-Naeini, E. J. Davis, and M. Schleier-Smith, PRX Quantum 2, 020319 (2021), arXiv: 2009.05549.

    Article  ADS  Google Scholar 

  42. R. E. Korf, in Multi-way number partitioning: Twenty-First International Joint Conference on Artificial Intelligence (San Francisco, 2009), pp. 538–543.

  43. E. L. Schreiber, R. E. Korf, and M. D. Moffitt, J. ACM 65, 1 (2018).

    Article  MathSciNet  Google Scholar 

  44. Y. Deller, S. Schmitt, M. Lewenstein, S. Lenk, M. Federer, F. Jendrzejewski, P. Hauke, and V. Kasper, arXiv: 2204.00340.

  45. Y. Haribara, Y. Yamamoto, K.-i. Kawarabayashi, and S. Utsunomiya, arXiv: 1501.07030.

  46. P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, Science 354, 614 (2016).

    Article  ADS  Google Scholar 

  47. T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K. Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Takesue, Science 354, 603 (2016).

    Article  ADS  Google Scholar 

  48. Y. Yamamoto, K. Aihara, T. Leleu, K. Kawarabayashi, S. Kako, M. Fejer, K. Inoue, and H. Takesue, npj Quantum Inf. 3, 49 (2017).

    Article  ADS  Google Scholar 

  49. Y. Yamamoto, T. Leleu, S. Ganguli, and H. Mabuchi, Appl. Phys. Lett. 117, 160501 (2020), arXiv: 2006.05649.

    Article  ADS  Google Scholar 

  50. T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama, K. Enbutsu, T. Umeki, R. Kasahara, K. Kawarabayashi, and H. Takesue, Sci. Adv. 7, eabh0952 (2021).

    Article  ADS  Google Scholar 

  51. N. Mohseni, P. L. McMahon, and T. Byrnes, Nat. Rev. Phys. 4, 363 (2022), arXiv: 2204.00276.

    Article  Google Scholar 

  52. B. Lu, L. Liu, J. Y. Song, K. Wen, and C. Wang, AAPPS Bull. 33, 7 (2023).

    Article  ADS  Google Scholar 

  53. B. Lu, C. R. Fan, L. Liu, K. Wen, and C. Wang, Opt. Express 31, 3676 (2023).

    Article  ADS  Google Scholar 

  54. H. Youssef, S. M. Sait, and H. Adiche, Eng. Appl. Artif. Intell. 14, 167 (2001).

    Article  Google Scholar 

  55. S. Shi, and C. H. Hsu, ACM Comput. Surv. 47, 1 (2015).

    Article  ADS  Google Scholar 

  56. A. Lucas, Quantum Inf. Process. 18, 203 (2019), arXiv: 1812.01789.

    Article  ADS  Google Scholar 

  57. A. Lucas, Front. Phys. 2, 5 (2014), arXiv: 1302.5843.

    Article  Google Scholar 

  58. S. A. Khawatreh, Int. J. Adv. Comput. Sci. Appl. 9, 24 (2018).

    Google Scholar 

  59. R. Korf, in Objective functions for multi-way number partitioning: Proceedings of the International Symposium on Combinatorial Search, volume 1 (2010), pp. 71–72.

    Google Scholar 

  60. B. Apolloni, N. Cesa-Bianchi, and D. De Falco, in A numerical implementation of “quantum annealing”: Stochastic Processes, Physics and Geometry: Proceedings of the Ascona-Locarno Conference (World Scientific, Singapore, 1990), pp. 97–111.

    Google Scholar 

  61. A. Das, and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008), arXiv: 0801.2193.

    Article  ADS  Google Scholar 

  62. E. Farhi, J. Goldstone, and S. Gutmann, arXiv: 1411.4028.

  63. Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, Phys. Rev. A 88, 063853 (2013), arXiv: 1311.2696.

    Article  ADS  Google Scholar 

  64. T. Inagaki, K. Inaba, R. Hamerly, K. Inoue, Y. Yamamoto, and H. Takesue, Nat. Photon. 10, 415 (2016), arXiv: 1604.08288.

    Article  ADS  Google Scholar 

  65. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, Phys. Rev. Lett. 120, 093601 (2018), arXiv: 1709.09555.

    Article  ADS  Google Scholar 

  66. W. Qin, A. Miranowicz, H. Jing, and F. Nori, Phys. Rev. Lett. 127, 093602 (2021), arXiv: 2101.03662.

    Article  ADS  Google Scholar 

  67. W. Qin, A. Miranowicz, and F. Nori, Phys. Rev. Lett. 129, 123602 (2022), arXiv: 2203.06892.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingwei Wen, Kai Wen or Ling Qian.

Additional information

This work was supported by the National Key R&D Plan (Grant No. 2021YFB2801800).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Wang, Z., Huang, Z. et al. Optical experimental solution for the multiway number partitioning problem and its application to computing power scheduling. Sci. China Phys. Mech. Astron. 66, 290313 (2023). https://doi.org/10.1007/s11433-023-2147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2147-3

Navigation