Skip to main content
Log in

Galactic interstellar scintillation observed from four globular cluster pulsars by FAST

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report detections of scintillation arcs for pulsars in globular clusters M5, M13 and M15 for the first time using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). From observations of these arcs at multiple epochs, we infer that screen-like scattering medium exists at distances \(4.1_{ - 0.3}^{ + 0.2}\), \(6.7_{ - 0.2}^{ + 0.2}\) and \(1.3_{ - 1.0}^{ + 0.7}\) kpc from Earth in the directions of M5, M13 and M15, respectively. This means M5’s and M13’s scattering screens are located at \(3.0_{ - 0.2}^{ + 0.1}\) and \(4.4_{ - 0.1}^{ + 0.1}\) kpc above the galactic plane, whereas, M15’s is at \(0.6_{ - 0.5}^{ + 0.3}\) kpc below the plane. We estimate the scintillation timescale and decorrelation bandwidth for each pulsar at each epoch using the one-dimensional auto-correlation in frequency and time of the dynamic spectra. We found that the boundary of the Local Bubble may have caused the scattering of M15, and detected the most distant off-plane scattering screens to date through pulsar scintillation, which provides evidence for understanding the medium circulation in the Milky Way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Rickett, Annu. Rev. Astron. Astrophys. 28, 561 (1990).

    Article  ADS  Google Scholar 

  2. A. Hewish, A. Wolszczan, and D. A. Graham, Mon. Not. R. Astron. Soc. 213, 167 (1985).

    Article  ADS  Google Scholar 

  3. J. M. Cordes, and A. Wolszczan, Astrophys. J. 307, L27 (1986).

    Article  ADS  Google Scholar 

  4. N. Wang, R. N. Manchester, S. Johnston, B. Rickett, J. Zhang, A. Yusup, and M. Chen, Mon. Not. R. Astron. Soc. 358, 270 (2005), arXiv: astro-ph/0501218.

    Article  ADS  Google Scholar 

  5. D. R. Stinebring, M. A. McLaughlin, J. M. Cordes, K. M. Becker, J. E. E. Goodman, M. A. Kramer, J. L. Sheckard, and C. T. Smith, Astrophys. J. 549, L97 (2001), arXiv: astro-ph/0010363.

    Article  ADS  Google Scholar 

  6. D. R. Stinebring, in Small Ionized and Neutral Structures, edited by M. Goss, and M. Haverkorn (Astronomical Society of the Pacific, San Francisco, 2007), p. 254.

    Google Scholar 

  7. W. F. Brisken, J. P. Macquart, J. J. Gao, B. J. Rickett, W. A. Coles, A. T. Deller, S. J. Tingay, and C. J. West, Astrophys. J. 708, 232 (2010), arXiv: 0910.5654.

    Article  ADS  Google Scholar 

  8. J. M. Yao, W. W. Zhu, P. Wang, D. Li, J. G. Lu, F. F. Kou, Y. Z. Yu, and B. Peng, Res. Astron. Astrophys. 20, 076 (2020).

    Article  ADS  Google Scholar 

  9. R. A. Main, S. A. Sanidas, J. Antoniadis, C. Bassa, S. Chen, I. Cognard, M. Gaikwad, H. Hu, G. H. Janssen, R. Karuppusamy, M. Kramer, K. J. Lee, K. Liu, G. Mall, J. W. McKee, M. B. Mickaliger, D. Perrodin, B. W. Stappers, C. Tiburzi, O. Wucknitz, L. Wang, and W. W. Zhu, Mon. Not. R. Astron. Soc. 499, 1468 (2020), arXiv: 2009.10707.

    Article  ADS  Google Scholar 

  10. D. J. Reardon, W. A. Coles, M. Bailes, N. D. R. Bhat, S. Dai, G. B. Hobbs, M. Kerr, R. N. Manchester, S. Oslowski, A. Parthasarathy, C. J. Russell, R. M. Shannon, R. Spiewak, L. Toomey, A. V. Tuntsov, W. van Straten, M. A. Walker, J. Wang, L. Zhang, and X. J. Zhu, Astrophys. J. 904, 104 (2020), arXiv: 2009.12757.

    Article  ADS  Google Scholar 

  11. A. G. Lyne, Nature 310, 300 (1984).

    Article  ADS  Google Scholar 

  12. S. M. Ord, M. Bailes, and W. van Straten, Astrophys. J. 574, L75 (2002), arXiv: astro-ph/0204421.

    Article  ADS  Google Scholar 

  13. S. M. Ransom, V. M. Kaspi, R. Ramachandran, P. Demorest, D. C. Backer, E. D. Pfahl, F. D. Ghigo, and D. L. Kaplan, Astrophys. J. 609, L71 (2004), arXiv: astro-ph/0404149.

    Article  ADS  Google Scholar 

  14. D. J. Reardon, W. A. Coles, G. Hobbs, S. Ord, M. Kerr, M. Bailes, N. D. R. Bhat, and V. Venkatraman Krishnan, Mon. Not. R. Astron. Soc. 485, 4389 (2019), arXiv: 1903.01990.

    Article  ADS  Google Scholar 

  15. D. Banyeretse, G. Agazie, J. Doane, O. Young, M. McLaughlin, and D. Stinebring, American Astronomical Society Meeting Abstracts (SAO/NASA Astrophysics Data System, Washington, 2019), p. 149.

    Google Scholar 

  16. G. Mall, R. A. Main, J. Antoniadis, C. G. Bassa, M. Burgay, S. Chen, I. Cognard, R. Concu, A. Corongiu, M. Gaikwad, H. Hu, G. H. Janssen, R. Karuppusamy, M. Kramer, K. J. Lee, K. Liu, J. W. McKee, A. Melis, M. B. Mickaliger, D. Perrodin, M. Pilia, A. Possenti, D. J. Reardon, S. A. Sanidas, T. Sprenger, B. W. Stappers, L. Wang, O. Wucknitz, and W. W. Zhu, Mon. Not. R. Astron. Soc. 511, 1104 (2022), arXiv: 2201.04245.

    Article  ADS  Google Scholar 

  17. P. Jiang, N. Y. Tang, L. G. Hou, M. T. Liu, M. Krčo, L. Qian, J. H. Sun, T. C. Ching, B. Liu, Y. Duan, Y. L. Yue, H. Q. Gan, R. Yao, H. Li, G. F. Pan, D. J. Yu, H. F. Liu, D. Li, B. Peng, and J. Yan, Res. Astron. Astrophys. 20, 064 (2020), arXiv: 2002.01786.

    Article  ADS  Google Scholar 

  18. W. van Straten, and M. Bailes, Publ. Astron. Soc. Aust. 28, 1 (2011), arXiv: 1008.3973.

    Article  ADS  Google Scholar 

  19. W. van Straten, P. Demorest, and S. Oslowski, Astron. Res. Tech. 9, 237 (2012).

    Google Scholar 

  20. P. C. C. Freire, A. Wolszczan, M. van den Berg, and J. W. T. Hessels, Astrophys. J. 679, 1433 (2008), arXiv: 0712.3826.

    Article  ADS  Google Scholar 

  21. C. Pallanca, S. M. Ransom, F. R. Ferraro, E. Dalessandro, B. Lanzoni, J. W. T. Hessels, I. Stairs, and P. C. C. Freire, Astrophys. J. 795, 29 (2014), arXiv: 1409.1424.

    Article  ADS  Google Scholar 

  22. H. Baumgardt, M. Hilker, A. Sollima, and A. Bellini, Mon. Not. R. Astron. Soc. 482, 5138 (2019), arXiv: 1811.01507.

    Article  ADS  Google Scholar 

  23. F. Kirsten, W. Vlemmings, P. Freire, M. Kramer, H. Rottmann, and R. M. Campbell, Astron. Astrophys. 565, A43 (2014), arXiv: 1403.7204.

    Article  ADS  Google Scholar 

  24. H. Baumgardt, and E. Vasiliev, Mon. Not. R. Astron. Soc. 505, 5957 (2021), arXiv: 2105.09526.

    Article  ADS  Google Scholar 

  25. A. Hewish, Mon. Not. R. Astron. Soc. 192, 799 (1980).

    ADS  Google Scholar 

  26. J. M. Cordes, Astrophys. J. 311, 183 (1986).

    Article  ADS  Google Scholar 

  27. N. Wang, Z. Yan, R. N. Manchester, and H. X. Wang, Mon. Not. R. Astron. Soc. 385, 1393 (2008), arXiv: 0706.3448.

    Article  ADS  Google Scholar 

  28. B. J. Rickett, W. A. Coles, C. F. Nava, M. A. McLaughlin, S. M. Ransom, F. Camilo, R. D. Ferdman, P. C. C. Freire, M. Kramer, A. G. Lyne, and I. H. Stairs, Astrophys. J. 787, 161 (2014), arXiv: 1404.1120.

    Article  ADS  Google Scholar 

  29. Z. Wu, J. P. W. Verbiest, R. A. Main, J. M. Grießmeier, Y. Liu, S. Oslowski, K. Moochickal Ambalappat, A. S. B. Nielsen, J. Künsemöller, J. Y. Donner, C. Tiburzi, N. Porayko, M. Serylak, L. Künkel, M. Brüggen, and C. Vocks, Astron. Astrophys. 663, A116 (2022), arXiv: 2203.10409.

    Article  Google Scholar 

  30. M. A. Walker, D. B. Melrose, D. R. Stinebring, and C. M. Zhang, Mon. Not. R. Astron. Soc. 354, 43 (2004), arXiv: astro-ph/0403587.

    Article  ADS  Google Scholar 

  31. J. M. Cordes, B. J. Rickett, D. R. Stinebring, and W. A. Coles, Astrophys. J. 637, 346 (2006), arXiv: astro-ph/0407072.

    Article  ADS  Google Scholar 

  32. J. M. Cordes, and B. J. Rickett, Astrophys. J. 507, 846 (1998).

    Article  ADS  Google Scholar 

  33. B. J. Rickett, W. A. Coles, C. F. Nava, M. A. McLaughlin, S. M. Ransom, F. Camilo, R. D. Ferdman, P. C. C. Freire, M. Kramer, A. G. Lyne, and I. H. Stairs, Astrophys. J. 787, 161 (2014), arXiv: 1404.1120.

    Article  ADS  Google Scholar 

  34. D. R. Stinebring, B. J. Rickett, A. H. Minter, A. S. Hill, A. P. Jussila, L. Mathis, M. A. McLaughlin, S. K. Ocker, and S. M. Ransom, Astrophys. J. 941, 34 (2022), arXiv: 2207.08756.

    Article  ADS  Google Scholar 

  35. J. W. McKee, H. Zhu, D. R. Stinebring, and J. M. Cordes, Astrophys. J. 927, 99 (2022), arXiv: 2112.11980.

    Article  ADS  Google Scholar 

  36. Y. Liu, J. P. W. Verbiest, R. A. Main, Z. Wu, K. M. Ambalappat, D. J. Champion, I. Cognard, L. Guillemot, M. Gaikwad, G. H. Janssen, M. Kramer, M. J. Keith, R. Karuppusamy, L. Künkel, K. Liu, J. W. McKee, M. B. Mickaliger, B. W. Stappers, G. M. Shaifullah, and G. Theureau, Astron. Astrophys. 664, A116 (2022), arXiv: 2203.16950.

    Article  Google Scholar 

  37. L. Levin, M. A. McLaughlin, G. Jones, J. M. Cordes, D. R. Stinebring, S. Chatterjee, T. Dolch, M. T. Lam, T. J. W. Lazio, N. Palliyaguru, Z. Arzoumanian, K. Crowter, P. B. Demorest, J. A. Ellis, R. D. Ferdman, E. Fonseca, M. E. Gonzalez, M. L. Jones, D. J. Nice, T. T. Pennucci, S. M. Ransom, I. H. Stairs, K. Stovall, J. K. Swiggum, and W. Zhu, Astrophys. J. 818, 166 (2016), arXiv: 1601.04490.

    Article  ADS  Google Scholar 

  38. R. A. Main, A. Parthasarathy, S. Johnston, A. Karastergiou, A. Basu, A. D. Cameron, M. J. Keith, L. S. Oswald, B. Posselt, D. J. Reardon, X. Song, and P. Weltevrede, Mon. Not. R. Astron. Soc. 518, 1086 (2023), arXiv: 2211.08471.

    Article  ADS  Google Scholar 

  39. P. R. Shapiro, and G. B. Field, Astrophys. J. 205, 762 (1976).

    Article  ADS  Google Scholar 

  40. J. M. Yao, R. N. Manchester, and N. Wang, Astrophys. J. 835, 29 (2017), arXiv: 1610.09448.

    Article  ADS  Google Scholar 

  41. U. L. Pen, and Y. Levin, Mon. Not. R. Astron. Soc. 442, 3338 (2014), arXiv: 1302.1897.

    Article  ADS  Google Scholar 

  42. J. K. Werk, K. H. R. Rubin, H. V. Bish, J. X. Prochaska, Y. Zheng, J. M. O’Meara, D. Lenz, C. Hummels, and A. J. Deason, Astrophys. J. 887, 89 (2019), arXiv: 1904.11014.

    Article  ADS  Google Scholar 

  43. M. Li, and S. Tonnesen, Astrophys. J. 898, 148 (2020), arXiv: 1910.14235.

    Article  ADS  Google Scholar 

  44. C. Zucker, A. A. Goodman, J. Alves, S. Bialy, M. Foley, J. S. Speagle, J. Groschedl, D. P. Finkbeiner, A. Burkert, D. Khimey, and C. Swiggum, Nature 601, 334 (2022), arXiv: 2201.05124.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qijun Zhi or Weiwei Zhu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National SKA Program of China (Grant Nos. 2020SKA0120200, 2022SKA0130100, and 2022SKA0130104), the National Nature Science Foundation of China (Grant Nos. 12273008, 11873067, 12041303, 12041304, 61875087, U1831120, U1838106, 61803373, 11303069, 11373011, 11873080, U2031117, and 12103069), the Natural Science and Technology Foundation of Guizhou Province (Grant No. [2023]024), the National Key R&D Program of China (Grant No. 2017YFB0503300), the Guizhou Provincial Science and Technology Foundation (Grant Nos. ZK[2023]024, ZK[[2022]304, [2017]5726-37, and [2018]5769-02), the Major Science and Technology Program of Xinjiang Uygur Autonomous Region (Grant Nos. 2022A03013-4, and 2022A03013-2), the Scientific Research Project of the Guizhou Provincial Education (Grant Nos. KY[2022]132, and KY[2022]137), the Guizhou Province Science and Technology Support Program (General Project) (Grant No. Qianhe Support [2023] General 333), the Foundation of Guizhou Provincial Education Department (Grant No. KY (2020) 003), the Natural Science Foundation of Xinjiiang Uygur Autonomous Region (Grant No. 2022D01D85), the Youth Innovation Promotion Association CAS (Grant No. 2021055), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-006), the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS and ACAMAR Postdoctoral Fellowship. This work made use of data from the FAST. FAST is a Chinese national mega-science facility, built and operated by the National Astronomical Observatories, Chinese Academy of Sciences. The authors also thank Lin Wang, Zhichen Pan and Pengfei Wang for proposing and acquiring the FAST data.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Tao, Z., Yuan, M. et al. Galactic interstellar scintillation observed from four globular cluster pulsars by FAST. Sci. China Phys. Mech. Astron. 66, 299511 (2023). https://doi.org/10.1007/s11433-023-2138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2138-5

Navigation