Skip to main content
Log in

Sign-reversed anomalous Nernst effect in the ferromagnetic Weyl-semimetal Fe3−δGeTe2: the role of Fe vacancies

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Anomalous Nernst effect, as a thermal partner of anomalous Hall effect, is particularly sensitive to the Berry curvature anomaly near the Fermi level, and has been used to probe the topological nature of quantum materials. In this work, we report the observation of both effects in the ferromagnetic Weyl-semimetal Fe3−δGeTe2 with tunable Fe vacancies. With decreasing Fe vacancies, the anomalous Hall conductivity evolves as a function of the longitudinal conductivity from the hopping region to the region where the intrinsic Berry curvature contribution dominates. Concomitant evolutions in the anomalous Nernst signal and the anomalous off-diagonal thermoelectric coefficient are observed below the Curie temperature, displaying a unique sign change caused by the Fe vacancies. Combining these results with first-principles calculations, we argue that the Fe-vacancy concentration plays a unique role in simultaneously tuning the chemical potential and ferromagnetism, which in turn controls the Berry curvature contribution in this family of ferromagnetic topological semimetals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013), arXiv: 1305.6780.

    Article  ADS  Google Scholar 

  2. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2015), arXiv: 1404.7794.

    Article  ADS  Google Scholar 

  3. Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  4. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.

    Google Scholar 

  5. F. Arnold, C. Shekhar, S. C. Wu, Y. Sun, R. D. Dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Nat. Commun. 7, 11615 (2016), arXiv: 1506.06577.

    Article  ADS  Google Scholar 

  6. C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Nat. Phys. 11, 645 (2015), arXiv: 1502.04361.

    Article  Google Scholar 

  7. N. J. Ghimire, Y. Luo, M. Neupane, D. J. Williams, E. D. Bauer, and F. Ronning, J. Phys.-Condens. Matter 27, 152201 (2015), arXiv: 1503.07571.

    Article  ADS  Google Scholar 

  8. C. L. Zhang, Z. Yuan, Q. D. Jiang, B. Tong, C. Zhang, X. C. Xie, and S. Jia, Phys. Rev. B 95, 085202 (2017), arXiv: 1702.01245.

    Article  ADS  Google Scholar 

  9. J. Wang, H. Yang, L. Ding, W. You, C. Xi, J. Cheng, Z. Shi, C. Cao, Y. Luo, Z. Zhu, J. H. Dai, M. L. Tian, and Y. K. Li, npj Quantum Mater. 4, 1 (2019).

    Article  ADS  Google Scholar 

  10. X. K. Li, L. C. Xu, L. C. Ding, J. H. Wang, M. S. Shen, X. F. Lu, Z. W. Zhu, and K. Behnia, Phys. Rev. Lett. 119, 056601 (2017).

    Article  ADS  Google Scholar 

  11. Y. Li, L. Li, J. Wang, T. Wang, X. Xu, C. Xi, C. Cao, and J. Dai, Phys. Rev. B 94, 121115 (2016).

    Article  ADS  Google Scholar 

  12. R. Ramos, M. H. Aguirre, A. Anadón, J. Blasco, I. Lucas, K. Uchida, P. A. Algarabel, L. Morellón, E. Saitoh, and M. R. Ibarra, Phys. Rev. B 90, 054422 (2014).

    Article  ADS  Google Scholar 

  13. L. Xu, X. Li, L. Ding, T. Chen, A. Sakai, B. Fauqué, S. Nakatsuji, Z. Zhu, and K. Behnia, Phys. Rev. B 101, 180404 (2020), arXiv: 2001.10264.

    Article  ADS  Google Scholar 

  14. A. Sakai, Y. P. Mizuta, A. A. Nugroho, R. Sihombing, T. Koretsune, M. T. Suzuki, N. Takemori, R. Ishii, D. Nishio-Hamane, R. Arita, P. Goswami, and S. Nakatsuji, Nat. Phys. 14, 1119 (2018), arXiv: 1807.04761.

    Article  Google Scholar 

  15. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Article  Google Scholar 

  16. Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018), arXiv: 1712.09947.

    Article  ADS  Google Scholar 

  17. H. Yang, W. You, J. Wang, J. Huang, C. Xi, X. Xu, C. Cao, M. Tian, Z. A. Xu, J. Dai, and Y. Li, Phys. Rev. Mater. 4, 024202 (2020), arXiv: 1811.03485.

    Article  Google Scholar 

  18. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011).

    Article  ADS  Google Scholar 

  19. A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kubler, C. Felser, and S. S. P. Parkin, Sci. Adv. 2, e1501870 (2016), arXiv: 1511.03128.

  20. J. Zou, Z. He, and G. Xu, npj Comput. Mater. 5, 96 (2019), arXiv: 1909.11999.

    Article  ADS  Google Scholar 

  21. K. Kim, J. Seo, E. Lee, K. T. Ko, B. S. Kim, B. G. Jang, J. M. Ok, J. Lee, Y. J. Jo, W. Kang, J. H. Shim, C. Kim, H. W. Yeom, B. Il Min, B. J. Yang, and J. S. Kim, Nat. Mater. 17, 794 (2018).

    Article  ADS  Google Scholar 

  22. A. F. May, S. Calder, C. Cantoni, H. Cao, and M. A. McGuire, Phys. Rev. B 93, 014411 (2016), arXiv: 1508.06959.

    Article  ADS  Google Scholar 

  23. J. X. Zhu, M. Janoschek, D. S. Chaves, J. C. Cezar, T. Durakiewicz, F. Ronning, Y. Sassa, M. Mansson, B. L. Scott, N. Wakeham, E. D. Bauer, and J. D. Thompson, Phys. Rev. B 93, 144404 (2016), arXiv: 1512.05847.

    Article  ADS  Google Scholar 

  24. Y. Wang, C. Xian, J. Wang, B. Liu, L. Ling, L. Zhang, L. Cao, Z. Qu, and Y. Xiong, Phys. Rev. B 96, 134428 (2017).

    Article  ADS  Google Scholar 

  25. Y. Liu, E. Stavitski, K. Attenkofer, and C. Petrovic, Phys. Rev. B 97, 165415 (2018), arXiv: 1804.06392.

    Article  ADS  Google Scholar 

  26. G. Drachuck, Z. Salman, M. W. Masters, V. Taufour, T. N. Lamichhane, Q. Lin, W. E. Straszheim, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 98, 144434 (2018), arXiv: 1809.03429.

    Article  ADS  Google Scholar 

  27. Y. You, Y. Gong, H. Li, Z. Li, M. Zhu, J. Tang, E. Liu, Y. Yao, G. Xu, F. Xu, and W. Wang, Phys. Rev. B 100, 134441 (2019), arXiv: 1907.02397.

    Article  ADS  Google Scholar 

  28. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Nature 563, 94 (2018), arXiv: 1803.02038.

    Article  ADS  Google Scholar 

  29. E. H. Sondheimer, Proc. Roy. Soc. A: Math. Phys. 193, 484 (1948).

    ADS  Google Scholar 

  30. D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010), arXiv: 0907.2021.

    Article  ADS  Google Scholar 

  31. D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Phys. Rev. Lett. 97, 026603 (2006), arXiv: cond-mat/0604561.

    Article  ADS  Google Scholar 

  32. B. Chen, J. H. Yang, H. D. Wang, M. Imai, H. Ohta, C. Michioka, K. Yoshimura, and M. H. Fang, J. Phys. Soc. Jpn. 82, 124711 (2013).

    Article  ADS  Google Scholar 

  33. G. Kresse, and J. Furthmüller, Phy. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  34. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  36. C. Cao, P. J. Hirschfeld, and H. P. Cheng, Phys. Rev. B 77, 220506 (2008), arXiv: 0803.3236.

    Article  ADS  Google Scholar 

  37. I. I. Mazin, M. D. Johannes, L. Boeri, K. Koepernik, and D. J. Singh, Phys. Rev. B 78, 085104 (2008), arXiv: 0806.1869.

    Article  ADS  Google Scholar 

  38. K. Nakamura, R. Arita, and H. Jkeda, Phys. Rev. B 83, 144512 (2011), arXiv: 1010.0533.

    Article  ADS  Google Scholar 

  39. A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008), arXiv: 0708.0650.

    Article  ADS  Google Scholar 

  40. G. X. Zhi, C. C. Xu, S. Q. Wu, F. L. Ning, and C. Cao, Comput. Phys. Commun. 271, 108196 (2022).

    Article  Google Scholar 

  41. T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 99, 086602 (2007).

    Article  ADS  Google Scholar 

  42. S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett. 97, 126602 (2006), arXiv: cond-mat/0605580.

    Article  ADS  Google Scholar 

  43. W. L. Lee, S. Watauchi, V. L. Miller, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 93, 226601 (2004), arXiv: cond-mat/0407765.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Cao, Jianhui Dai or Yuke Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1932155, 11874136, 11874137, and U19A2093), the National Key Projects for Research and Development of China (Grant No. 2019YFA0308602), and the Key R&D Program of Zhejiang Province China (Grant No. 2021C01002). Yu-Ke Li was also supported by an open program from Wuhan National High Magnetic Field Center (Grant No. 2016KF03). The authors thank Yongkang Luo and Huiqiu Yuan for fruitful discussions and valuable comments.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, Q., Huang, J. et al. Sign-reversed anomalous Nernst effect in the ferromagnetic Weyl-semimetal Fe3−δGeTe2: the role of Fe vacancies. Sci. China Phys. Mech. Astron. 65, 117411 (2022). https://doi.org/10.1007/s11433-022-1938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1938-0

Navigation