Skip to main content
Log in

Dual-polarization two-dimensional valley photonic crystals

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The recent realization of valley physics in photonic systems has enriched the topological phases of light with protected edge modes and shown applications in designing high-performance photonic devices. However, the widely reported valley Hall effect of light in two-dimensional systems is limited to one single polarization. Here, we present dual-polarization two-dimensional valley photonic crystals by simultaneously opening two frequency accidental degenerate Dirac cones. Two band gaps with different polarizations are characterized by opposite-valley Chern numbers, which are confirmed by the opposite-phase vortex distributions of bulk modes and opposite Berry curvatures. This situation results in the polarization-dependent refraction of bulk and edge modes, which locate in opposite valleys. The polarization-independent topological valley transport is also demonstrated. Our work shows the flexible control of light in topological photonic systems with a polarization degree of freedom and has applications in polarization multiplexing photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821 (2014), arXiv: 1408.6730.

    Article  ADS  Google Scholar 

  2. Y. Wu, C. Li, X. Hu, Y. Ao, Y. Zhao, and Q. Gong, Adv. Opt. Mater. 5, 1700357 (2017).

    Article  Google Scholar 

  3. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019), arXiv: 1802.04173.

    Article  ADS  Google Scholar 

  4. M. Kim, Z. Jacob, and J. Rho, Light Sci. Appl. 9, 130 (2020).

    Article  ADS  Google Scholar 

  5. S. Xia, D. Song, N. Wang, X. Liu, J. Ma, L. Tang, H. Buljan, and Z. Chen, Opt. Mater. Express 11, 1292 (2021), arXiv: 2103.16147.

    Article  ADS  Google Scholar 

  6. G. J. Tang, X. T. He, F. L. Shi, J. W. Liu, X. D. Chen, and J. W. Dong, Laser Photon. Rev. 16, 2100300 (2022), arXiv: 2201.06294.

    Article  ADS  Google Scholar 

  7. F. D. M. Haldane, and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008), arXiv: cond-mat/0503588.

    Article  ADS  Google Scholar 

  8. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, Phys. Rev. Lett. 100, 013905 (2008), arXiv: 0712.1776.

    Article  ADS  Google Scholar 

  9. X. Ao, Z. Lin, and C. T. Chan, Phys. Rev. B 80, 033105 (2009).

    Article  ADS  Google Scholar 

  10. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, Phys. Rev. Lett. 106, 093903 (2011).

    Article  ADS  Google Scholar 

  11. T. Ochiai, Phys. Rev. B 86, 075152 (2012).

    Article  ADS  Google Scholar 

  12. S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljacić, Phys. Rev. Lett. 115, 253901 (2015), arXiv: 1504.04399.

    Article  ADS  Google Scholar 

  13. B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Science 358, 636 (2017).

    Article  ADS  Google Scholar 

  14. M. Wang, R. Y. Zhang, L. Zhang, D. Wang, Q. Guo, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 126, 067401 (2021), arXiv: 2009.03065.

    Article  ADS  Google Scholar 

  15. Z. G. Chen, J. Mei, X. C. Sun, X. Zhang, J. Zhao, and Y. Wu, Phys. Rev. A 95, 043827 (2017).

    Article  ADS  Google Scholar 

  16. W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, Phys. Rev. Lett. 114, 037402 (2015), arXiv: 1401.5448.

    Article  ADS  Google Scholar 

  17. Y. Yang, Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, and H. Chen, Nature 565, 622 (2019), arXiv: 1804.03595.

    Article  ADS  Google Scholar 

  18. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Nat. Phys. 7, 907 (2011), arXiv: 1102.3256.

    Article  Google Scholar 

  19. M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Nat. Photon. 7, 1001 (2013), arXiv: 1302.2153.

    Article  ADS  Google Scholar 

  20. Y. Plotnik, M. A. Bandres, S. Stützer, Y. Lumer, M. C. Rechtsman, A. Szameit, and M. Segev, Phys. Rev. B 94, 020301 (2016).

    Article  ADS  Google Scholar 

  21. D. D. Solnyshkov, A. V. Nalitov, and G. Malpuech, Phys. Rev. Lett. 116, 046402 (2016), arXiv: 1506.04626.

    Article  ADS  Google Scholar 

  22. P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Nat. Photon. 11, 651 (2017), arXiv: 1704.07310.

    Article  ADS  Google Scholar 

  23. M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Science 359, eaar4005 (2018).

    Article  Google Scholar 

  24. A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2012), arXiv: 1204.5700.

    Article  ADS  Google Scholar 

  25. W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, and C. T. Chan, Nat. Commun. 5, 5782 (2014), arXiv: 1401.0367.

    Article  ADS  Google Scholar 

  26. L. H. Wu, and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).

    Article  ADS  Google Scholar 

  27. Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu, and Z. H. Hang, Phys. Rev. Lett. 120, 217401 (2018).

    Article  ADS  Google Scholar 

  28. T. Ma, and G. Shvets, New J. Phys. 18, 025012 (2016), arXiv: 1601.06673.

    Article  ADS  Google Scholar 

  29. J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, Nat. Mater. 16, 298 (2017).

    Article  ADS  Google Scholar 

  30. X. D. Chen, F. L. Zhao, M. Chen, and J. W. Dong, Phys. Rev. B 96, 020202 (2017), arXiv: 1602.03352.

    Article  ADS  Google Scholar 

  31. F. Gao, H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G. Shvets, and B. Zhang, Nat. Phys. 14, 140 (2018).

    Article  Google Scholar 

  32. X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and W. Wen, Nat. Commun. 8, 1304 (2017), arXiv: 1703.04570.

    Article  ADS  Google Scholar 

  33. J. W. Liu, F. L. Shi, X. T. He, G. J. Tang, W. J. Chen, X. D. Chen, and J. W. Dong, Adv. Phys.-X 6, 1905546 (2021).

    Google Scholar 

  34. H. Xue, Y. Yang, and B. Zhang, Adv. Photon. Res. 2, 2100013 (2021).

    Article  Google Scholar 

  35. Y. Yang, H. Jiang, and Z. H. Hang, Sci. Rep. 8, 1588 (2018).

    Article  ADS  Google Scholar 

  36. J. Noh, S. Huang, K. P. Chen, and M. C. Rechtsman, Phys. Rev. Lett. 120, 063902 (2018), arXiv: 1706.00059.

    Article  ADS  Google Scholar 

  37. D. Song, D. Leykam, J. Su, X. Liu, L. Tang, S. Liu, J. Zhao, N. K. Efremidis, J. Xu, and Z. Chen, Phys. Rev. Lett. 122, 123903 (2019), arXiv: 1810.12736.

    Article  ADS  Google Scholar 

  38. L. Ye, Y. Yang, Z. H. Hang, C. Qiu, and Z. Liu, Appl. Phys. Lett. 111, 251107 (2017).

    Article  ADS  Google Scholar 

  39. M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, Nat. Nanotech. 14, 31 (2018).

    Article  ADS  Google Scholar 

  40. X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, and J. W. Dong, Nat. Commun. 10, 872 (2019), arXiv: 1805.10962.

    Article  ADS  Google Scholar 

  41. Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, Nat. Photon. 14, 446 (2020), arXiv: 1904.04213.

    Article  ADS  Google Scholar 

  42. Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Nature 578, 246 (2020).

    Article  ADS  Google Scholar 

  43. H. Yoshimi, T. Yamaguchi, R. Katsumi, Y. Ota, Y. Arakawa, and S. Iwamoto, Opt. Express 29, 13441 (2021), arXiv: 2102.09252.

    Article  ADS  Google Scholar 

  44. H. T. Phan, F. Liu, and K. Wakabayashi, Opt. Express 29, 18277 (2021).

    Article  ADS  Google Scholar 

  45. X. Xie, S. Yan, J. Dang, J. Yang, S. Xiao, Y. Wang, S. Shi, L. Yang, D. Dai, Y. Yuan, N. Luo, T. Cui, G. Chi, Z. Zuo, B. B. Li, C. Wang, and X. Xu, Phys. Rev. Appl. 16, 014036 (2021), arXiv: 2106.13392.

    Article  ADS  Google Scholar 

  46. L. Gu, Q. Yuan, Q. Zhao, Y. Ji, Z. Liu, L. Fang, X. Gan, and J. Zhao, J. Lightwave Technol. 39, 5069 (2021), arXiv: 2105.07171.

    Article  ADS  Google Scholar 

  47. A. M. Dubrovkin, U. Chattopadhyay, B. Qiang, O. Buchnev, Q. J. Wang, Y. Chong, and N. I. Zheludev, Appl. Phys. Lett. 116, 191105 (2020).

    Article  ADS  Google Scholar 

  48. H. Zhong, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, and Z. Chen, Adv. Photon. 3, 056001 (2021), arXiv: 2010.02902.

    Article  ADS  Google Scholar 

  49. M. Qiu, and S. He, Phys. Lett. A 266, 425 (2000).

    Article  ADS  Google Scholar 

  50. E. Degirmenci, and P. Landais, Appl. Opt. 52, 7367 (2013).

    Article  ADS  Google Scholar 

  51. K. Wang, Phys. Rev. B 100, 115140 (2019).

    Article  ADS  Google Scholar 

  52. U. Kuhl, S. Barkhofen, T. Tudorovskiy, H. J. Stöckmann, T. Hossain, L. de Forges de Parny, and F. Mortessagne, Phys. Rev. B 82, 094308 (2010), arXiv: 1006.0901.

    Article  ADS  Google Scholar 

  53. J. Lu, C. Qiu, S. Xu, Y. Ye, M. Ke, and Z. Liu, Phys. Rev. B 89, 134302 (2014).

    Article  ADS  Google Scholar 

  54. S. Y. Yu, X. C. Sun, X. Ni, Q. Wang, X. J. Yan, C. He, X. P. Liu, L. Feng, M. H. Lu, and Y. F. Chen, Nat. Mater. 15, 1243 (2016).

    Article  ADS  Google Scholar 

  55. J. Lu, C. Qiu, M. Ke, and Z. Liu, Phys. Rev. Lett. 116, 093901 (2016), arXiv: 1707.02059.

    Article  ADS  Google Scholar 

  56. X. D. Chen, X. T. He, and J. W. Dong, Laser Photon. Rev. 13, 1900091 (2019).

    Article  ADS  Google Scholar 

  57. L. He, H. Zhang, W. Zhang, Y. Wang, and X. Zhang, New J. Phys. 23, 093026 (2021).

    Article  ADS  Google Scholar 

  58. B. Xie, G. Su, H. F. Wang, F. Liu, L. Hu, S. Y. Yu, P. Zhan, M. H. Lu, Z. Wang, and Y. F. Chen, Nat. Commun. 11, 3768 (2020).

    Article  ADS  Google Scholar 

  59. M. Jung, R. G. Gladstone, and G. B. Shvets, Adv. Photon. 2, 046003 (2020).

    Article  ADS  Google Scholar 

  60. T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets, Phys. Rev. Lett. 114, 127401 (2015).

    Article  ADS  Google Scholar 

  61. X. D. Chen, W. M. Deng, F. L. Zhao, and J. W. Dong, Laser Photon. Rev. 12, 1800073 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074443, 62035016, and 11904421), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019B151502036), Guangzhou Science, Technology and Innovation Commission (Grant Nos. 201904010223, 202002030322, and 202102020693), and the Fundamental Research Funds for the Central Universities (Grant Nos. 20lgzd29, 20lgjc05, and 2021qntd27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Chen.

Additional information

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XT., Liu, JW., Shi, FL. et al. Dual-polarization two-dimensional valley photonic crystals. Sci. China Phys. Mech. Astron. 65, 284212 (2022). https://doi.org/10.1007/s11433-022-1916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1916-7

PACS number(s)

Navigation