Skip to main content
Log in

Probing the flavor-specific scalar mediator for the muon (g — 2) deviation, the proton radius puzzle and the light dark matter production

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Flavor-specific scalar bosons exist in various Standard Model extensions and couple to a single generation of fermions via a global flavor symmetry breaking mechanism. Given this strategy, we propose a MeV flavor-specific scalar model in dimension-5 operator series, which explains the muon g — 2 anomaly and proton radius puzzle by coupling with the muon and down-quark at the same time. The framework is consistent with the null result of high-intensity searches. Specifically, the supernova constraints for muon couplings become weakened by including the contribution of down-quark interaction. The parameter space for explaining muon g — 2 discrepancy is available when 10% energy deposition is required in the energy explosion process in the supernova, but this is ruled out by the 1% energy deposition requirement. We also investigate the searches for mediator and dark matter and the resulting constraints on viable parameter space such as nuclear physics constraints, direct detection for light boosted dark matter, and possible CMB constraints. When compared with conventional dark matter production, light dark matter production has two additional modifications: bound state formation and early kinetic equilibrium decoupling. We are now looking into the implications of these effects on the relic density of light dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Bennett, et al. (Muon g - 2 Collaboration), Phys. Rev. D 73, 072003 (2006), arXiv: hep-ex/0602035.

    Article  ADS  Google Scholar 

  2. M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  3. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436.

    Article  ADS  Google Scholar 

  4. T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang, Phys. Rev. Lett. 121, 022003 (2018), arXiv: 1801.07224.

    Article  ADS  Google Scholar 

  5. A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018), arXiv: 1802.02995.

    Article  ADS  Google Scholar 

  6. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020), arXiv: 1908.00921 [Erratum: Eur. Phys. J. C 80, 410 (2020)].

    Article  ADS  Google Scholar 

  7. T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè, G. Colangelo, F. Curciarello, H. Czyż, I. Danilkin, M. Davier, C. T. H. Davies, M. Della Morte, S. I. Eidelman, A. X. El-Khadra, A. Grardin, D. Giusti, M. Golterman, S. Gottlieb, V. Gülpers, F. Hagelstein, M. Hayakawa, G. Herdoíza, D. W. Hertzog, A. Hoecker, M. Hoferichter, B.-L. Hoid, R. J. Hudspith, F. Ignatov, T. Izubuchi, F. Jegerlehner, L. Jin, A. Keshavarzi, T. Kinoshita, B. Kubis, A. Kupich, A. Kupsścć, L. Laub, C. Lehner, L. Lellouch, I. Logashenko, B. Malaescu, K. Maltman, M. K. Marinkovicí, P. Masjuan, A. S. Meyer, H. B. Meyer, T. Mibe, K. Miura, S. E. Mller, M. Nio, D. Nomura, A. Nyffeler, V. Pascalutsa, M. Passera, E. Perez del Rio, S. Peris, A. Portelli, M. Procura, C. F. Redmer, B. L. Roberts, P. Sánchez-Puertas, S. Serednyakov, B. Shwartz, S. Simula, D. Stöckinger, H. Stckinger-Kim, P. Stoffer, T. Teubner, R. Van de Water, M. Vanderhaeghen, G. Venanzoni, G. von Hippel, H. Wittig, Z. Zhang, M. N. Achasov, A. Bashir, N. Cardoso, B. Chakraborty, E.-H. Chao, J. Charles, A. Crivellin, O. Deineka, A. Denig, C. DeTar, C. A. Dominguez, A. E. Dorokhov, V. P. Druzhinin, G. Eichmann, M. Fael, C. S. Fischer, E. Gamiz, Z. Gelzer, J. R. Green, S. Guellati-Khelifa, D. Hatton, N. Hermansson-Truedsson, S. Holz, B. Hörz, M. Knecht, J. Koponen, A. S. Kronfeld, J. Laiho, S. Leupold, P. B. Mackenzie, W. J. Marciano, C. McNeile, D. Mohler, J. Monnard, E. T. Neil, A. V. Nesterenko, K. Ottnad, V. Pauk, A. E. Radzhabov, E. de Rafael, K. Raya, A. Risch, A. Rodríguez-Sánchez, P. Roig, T. San José, E. P. Solodov, R. Sugar, K. Yu. Todyshev, A. Vainshtein, A. Vaquero Avilés-Casco, E. Weil, J. Wilhelm, R. Williams, and A. S. Zhevlakov, arXiv: 2006.04822.

  8. B. Abi, et al. (Muon g - 2 Collaboration), Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281.

    Article  ADS  Google Scholar 

  9. R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. Knowles, E. O. Le Bigot, Y. W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and F. Kottmann, Nature 466, 213 (2010).

    Article  ADS  Google Scholar 

  10. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008), arXiv: 0801.0028.

    Article  ADS  Google Scholar 

  11. P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016), arXiv: 1507.07956.

    Article  ADS  Google Scholar 

  12. W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, X. Bai, L. Ye, K. Gnanvo, C. Gu, M. Levillain, X. Yan, D. W. Higinbotham, M. Meziane, Z. Ye, K. Adhikari, B. Aljawrneh, H. Bhatt, D. Bhetuwal, J. Brock, V. Burkert, C. Carlin, A. Deur, D. Di, J. Dunne, P. Ekanayaka, L. El-Fassi, B. Emmich, L. Gan, O. Glamazdin, M. L. Kabir, A. Karki, C. Keith, S. Kowalski, V. Lagerquist, I. Larin, T. Liu, A. Liyanage, J. Maxwell, D. Meekins, S. J. Nazeer, V. Nelyubin, H. Nguyen, R. Pedroni, C. Perdrisat, J. Pierce, V. Punjabi, M. Shabestari, A. Shahinyan, R. Silwal, S. Stepanyan, A. Subedi, V. V. Tarasov, N. Ton, Y. Zhang, and Z. W. Zhao, Nature 575, 147 (2019).

    Article  ADS  Google Scholar 

  13. A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour, D. C. Yost, T. W. Hänsch, N. Kolachevsky, and T. Udem, Science 358, 79 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C. Vutha, and E. A. Hessels, Science 365, 1007 (2019).

    Article  ADS  Google Scholar 

  15. H. Fleurbaey, S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F. Biraben, F. Nez, M. Abgrall, and J. Guéina, Phys. Rev. Lett. 120, 183001 (2018).

    Article  ADS  Google Scholar 

  16. M. Mihovilovič, P. Achenbach, T. Beranek, J. Beričič, J. C. Bernauer, R. Böhm, D. Bosnar, M. Cardinali, L. Correa, L. Debenjak, A. Denig, M. O. Distler, A. Esser, M. I. Ferretti Bondy, H. Fonvieille, J. M. Friedrich, I. Friščić, M. Hoek, S. Kegel, H. Merkel, D. G. Middleton, U. Müller, J. Pochodzalla, B. S. Schlimme, M. Schoth, F. Schulz, C. Sfienti, S. Širca, S. Štajner, Y. Stöttinger, M. Thiel, A. Tyukin, M. Vanderhaeghen, and A. B. Weber, Eur. Phys. J. A 57, 107 (2021), arXiv: 1905.11182.

    Article  ADS  Google Scholar 

  17. R. Essig, J. A. Jaros, W. Wester, P. Hansson Adrian, S. Andreas, T. Averett, O. Baker, B. Batell, M. Battaglieri, J. Beacham, T. Beranek, J. D. Bjorken, F. Bossi, J. R. Boyce, G. D. Cates, A. Celentano, A. S. Chou, R. Cowan, F. Curciarello, H. Davoudiasl, P. de Niverville, R. De Vita, A. Denig, R. Dharmapalan, B. Dongwi, B. Döbrich, B. Echenard, D. Espriu, S. Fegan, P. Fisher, G. B. Franklin, A. Gasparian, Y. Gershtein, M. Graham, P. W. Graham, A. Haas, A. Hatzikoutelis, M. Holtrop, I. Irastorza, E. Izaguirre, J. Jaeckel, Y. Kahn, N. Kalantarians, M. Kohl, G. Krnjaic, V. Kubarovsky, H.-S. Lee, A. Lindner, A. Lobanov, W. J. Marciano, D. J. E. Marsh, T. Maruyama, D. McKeen, H. Merkel, K. Moffeit, P. Monaghan, G. Mueller, T. K. Nelson, G. R. Neil, M. Oriunno, Z. Pavlovic, S. K. Phillips, M. J. Pivovaroff, R. Poltis, M. Pospelov, S. Rajendran, J. Redondo, A. Ringwald, A. Ritz, J. Ruz, K. Saenboonruang, P. Schuster, M. Shinn, T. R. Slatyer, J. H. Steffen, S. Stepanyan, D. B. Tanner, J. Thaler, M. E. Tobar, N. Toro, A. Upadye, R. Van de Water, B. Vlahovic, J. K. Vogel, D. Walker, A. Weltman, B. Wojtsekhowski, S. Zhang, and K. Zioutas, arXiv: 1311.0029.

  18. B. P. Padley, K. Sinha, and K. Wang, Phys. Rev. D 92, 055025 (2015), arXiv: 1505.05877.

    Article  ADS  Google Scholar 

  19. J. Alexander, et al. (Dark Sectors 2016 Workshop), arXiv: 1608.08632.

  20. M. Battaglieri, et al. (U.S. Cosmic Visions: New Ideas in Dark Matter), arXiv: 1707.04591.

  21. A. Das, T. Nomura, H. Okada, and S. Roy, Phys. Rev. D 96, 075001 (2017), arXiv: 1704.02078.

    Article  ADS  Google Scholar 

  22. D. Sabatta, A. S. Cornell, A. Goyal, M. Kumar, B. Mellado, and X. Ruan, Chin. Phys. C 44, 063103 (2020), arXiv: 1909.03969.

    Article  ADS  Google Scholar 

  23. R. T. D’Agnolo, D. Liu, J. T. Ruderman, and P.-J. Wang, arXiv: 2012.11766.

  24. L. Su, W. Wang, L. Wu, J. M. Yang, and B. Zhu, Phys. Rev. D 102, 115028 (2020).

    Article  ADS  Google Scholar 

  25. S. Alekhin, W. Altmannshofer, T. Asaka, B. Batell, F. Bezrukov, K. Bondarenko, A. Boyarsky, K. Y. Choi, C. Corral, N. Craig, D. Curtin, S. Davidson, A. de Gouva, S. Dell’Oro, P. deNiverville, P. S. Bhupal Dev, H. Dreiner, M. Drewes, S. Eijima, R. Essig, A. Fradette, B. Garbrecht, B. Gavela, G. F. Giudice, M. D. Goodsell, D. Gorbunov, S. Gori, C. Grojean, A. Guffanti, T. Hambye, S. H. Hansen, J. C. Helo, P. Hernandez, A. Ibarra, A. Ivashko, E. Izaguirre, J. Jaeckel, Y. S. Jeong, F. Kahlhoefer, Y. Kahn, A. Katz, C. S. Kim, S. Kovalenko, G. Krnjaic, V. E. Lyubovitskij, S. Marcocci, M. Mccullough, D. McKeen, G. Mitselmakher, S. O. Moch, R. N. Mohapatra, D. E. Morrissey, M. Ovchynnikov, E. Paschos, A. Pilaftsis, M. Pospelov, M. H. Reno, A. Ringwald, A. Ritz, L. Roszkowski, V. Rubakov, O. Ruchayskiy, I. Schienbein, D. Schmeier, K. Schmidt-Hoberg, P. Schwaller, G. Senjanovic, O. Seto, M. Shaposhnikov, L. Shchutska, J. Shelton, R. Shrock, B. Shuve, M. Spannowsky, A. Spray, F. Staub, D. Stolarski, M. Strassler, V. Tello, F. Tramontano, A. Tripathi, S. Tulin, F. Vissani, M. W. Winkler, and K. M. Zurek, Rep. Prog. Phys. 79, 124201 (2016), arXiv: 1504.04855.

    Article  ADS  Google Scholar 

  26. B. Batell, A. Freitas, A. Ismail, and D. McKeen, Phys. Rev. D 98, 055026 (2018), arXiv: 1712.10022.

    Article  ADS  Google Scholar 

  27. B. Batell, A. Freitas, A. Ismail, and D. McKeen, Phys. Rev. D 100, 095020 (2019), arXiv: 1812.05103.

    Article  ADS  Google Scholar 

  28. G. Krnjaic, G. Marques-Tavares, D. Redigolo, and K. Tobioka, Phys. Rev. Lett. 124, 041802 (2020), arXiv: 1902.07715.

    Article  ADS  Google Scholar 

  29. G. Krnjaic, Phys. Rev. D 94, 073009 (2016), arXiv: 1512.04119.

    Article  ADS  Google Scholar 

  30. B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald, and K. Schmidt-Hoberg, J. High Energ. Phys. 2016(2), 18 (2016).

    Article  Google Scholar 

  31. M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, and K. Schmidt-Hoberg, J. High Energ. Phys. 2017(12), 94 (2017) [Erratum: J. High Energ. Phys. 03, 190 (2021)].

    Article  Google Scholar 

  32. A. V. Artamonov, B. Bassalleck, B. Bhuyan, E. W. Blackmore, D. A. Bryman, S. Chen, I. H. Chiang, I. A. Christidi, P. S. Cooper, M. V. Diwan, J. S. Frank, T. Fujiwara, J. Hu, J. Ives, D. E. Jaffe, S. Kabe, S. H. Kettell, M. M. Khabibullin, A. N. Khotjantsev, P. Kitching, M. Kobayashi, T. K. Komatsubara, A. Konaka, A. P. Kozhevnikov, Y. G. Kudenko, A. Kushnirenko, L. G. Landsberg, B. Lewis, K. K. Li, L. S. Littenberg, J. A. Macdonald, J. Mildenberger, O. V. Mineev, M. Miyajima, K. Mizouchi, V. A. Mukhin, N. Muramatsu, T. Nakano, M. Nomachi, T. Nomura, T. Numao, V. F. Obraztsov, K. Omata, D. I. Patalakha, S. V. Petrenko, R. Poutissou, E. J. Ramberg, G. Redlinger, T. Sato, T. Sekiguchi, T. Shinkawa, R. C. Strand, S. Sugimoto, Y. Tamagawa, R. Tschirhart, T. Tsunemi, D. V. Vavilov, B. Viren, Z. Wang, N. V. Yershov, Y. Yoshimura, and T. Yoshioka, Phys. Rev. D 79, 092004 (2009), arXiv: 0903.0030.

    Article  ADS  Google Scholar 

  33. T. Bringmann, and M. Pospelov, Phys. Rev. Lett. 122, 171801 (2019), arXiv: 1810.10543.

    Article  ADS  Google Scholar 

  34. Y. Ema, F. Sala, and R. Sato, Phys. Rev. Lett. 122, 181802 (2019), arXiv: 1811.00520.

    Article  ADS  Google Scholar 

  35. Y. S. Liu, D. McKeen, and G. A. Miller, Phys. Rev. Lett. 117, 101801 (2016), arXiv: 1605.04612.

    Article  ADS  Google Scholar 

  36. X. Liu, Y. Li, T. Li, and B. Zhu, J. High Energ. Phys. 2020(10), 197 (2020).

    Article  ADS  Google Scholar 

  37. M. Endo, K. Hamaguchi, S. Iwamoto, and T. Kitahara, J. High Energ. Phys. 2021(7), 75 (2021).

    Article  Google Scholar 

  38. J. Cao, Y. He, J. Lian, D. Zhang, and P. Zhu, Phys. Rev. D 104, 055009 (2021), arXiv: 2102.11355.

    Article  ADS  Google Scholar 

  39. M. Abdughani, Y.-Z. Fan, L. Feng, Y.-L. S. Tsai, L. Wu, and Q. Yuan, Sci. Bull. 66, 1545 (2021).

    Article  Google Scholar 

  40. C. Lazzeroni, et al. (NA62 Collaboration), Phys. Lett. B 719, 326 (2013).

    Article  ADS  Google Scholar 

  41. R. Jackiw, and S. Weinberg, Phys. Rev. D 5, 2396 (1972).

    Article  ADS  Google Scholar 

  42. V. Barger, C. W. Chiang, W. Y. Keung, and D. Marfatia, Phys. Rev. Lett. 106, 153001 (2011), arXiv: 1011.3519.

    Article  ADS  Google Scholar 

  43. D. Tucker-Smith, and I. Yavin, Phys. Rev. D 83, 101702 (2011), arXiv: 1011.4922.

    Article  ADS  Google Scholar 

  44. G. A. Miller, Phys. Rev. C 91, 055204 (2015), arXiv: 1501.01036.

    Article  ADS  Google Scholar 

  45. M. Perelstein, and Y. C. San, Phys. Rev. D 103, 035032 (2021), arXiv: 2009.09867.

    Article  ADS  Google Scholar 

  46. A. Caputo, G. Raffelt, and E. Vitagliano, arXiv: 2109.03244.

  47. P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo, and A. Mirizzi, J. Cosmol. Astropart. Phys. 2019, 016 (2019), arXiv: 1906.11844 [Erratum: J. Cosmol. Astropart. Phys. 05, E01 (2020)].

    Article  Google Scholar 

  48. J. L. Friar, Nucl. Phys. A 156, 43 (1970).

    Article  ADS  Google Scholar 

  49. J. L. Friar, and B. F. Gibson, Phys. Rev. C 18, 908 (1978).

    Article  ADS  Google Scholar 

  50. S. A. Coon, and R. C. Barrett, Phys. Rev. C 36, 2189 (1987).

    Article  ADS  Google Scholar 

  51. G. A. Miller, B. M. K. Nefkens, and I. Šlaus, Phys. Rep. 194, 1 (1990).

    Article  ADS  Google Scholar 

  52. R. B. Wiringa, S. Pastore, S. C. Pieper, and G. A. Miller, Phys. Rev. C 88, 044333 (2013), arXiv: 1308.5670.

    Article  ADS  Google Scholar 

  53. H. Leeb, and J. Schmiedmayer, Phys. Rev. Lett. 68, 1472 (1992).

    Article  ADS  Google Scholar 

  54. A. A. Aguilar-Arevalo, M. Backfish, A. Bashyal, B. Batell, B. C. Brown, R. Carr, A. Chatterjee, R. L. Cooper, P. deNiverville, R. Dharmapalan, Z. Djurcic, R. Ford, F. G. Garcia, G. T. Garvey, J. Grange, J. A. Green, E. C. Huang, W. Huelsnitz, I. L. de Icaza Astiz, G. Karagiorgi, T. Katori, W. Ketchum, T. Kobilarcik, Q. Liu, W. C. Louis, W. Marsh, C. D. Moore, G. B. Mills, J. Mirabal, P. Nienaber, Z. Pavlovic, D. Perevalov, H. Ray, B. P. Roe, M. H. Shaevitz, S. Shahsavarani, I. Stancu, R. Tayloe, C. Taylor, R. T. Thornton, R. G. Van de Water, W. Wester, D. H. White, and J. Yu, Phys. Rev. D 98, 112004 (2018), arXiv: 1807.06137.

    Article  ADS  Google Scholar 

  55. I. Adachi, et al. (Belle II Collaboration), Phys. Rev. Lett. 124, 141801 (2020).

    Article  ADS  Google Scholar 

  56. J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, Phys. Rev. D 38, 3375 (1988).

    Article  ADS  Google Scholar 

  57. E. Cortina Gil, et al. (NA62), arXiv: 2101.12304.

  58. T. H. Yeh, K. A. Olive, and B. D. Fields, J. Cosmol. Astropart. Phys. 2021(03), 046 (2021), arXiv: 2011.13874.

    Article  Google Scholar 

  59. H. An, M. B. Wise, and Y. Zhang, Phys. Lett. B 773, 121 (2017), arXiv: 1606.02305.

    Article  ADS  Google Scholar 

  60. R. Oncala, and K. Petraki, J. High Energ. Phys. 2020(2), 36 (2020).

    Article  Google Scholar 

  61. T. Binder, K. Mukaida, and K. Petraki, Phys. Rev. Lett. 124, 161102 (2020), arXiv: 1910.11288.

    Article  ADS  Google Scholar 

  62. R. Oncala, and K. Petraki, J. High Energ. Phys. 2019(1), 70 (2019).

    Article  Google Scholar 

  63. T. Binder, T. Bringmann, M. Gustafsson, and A. Hryczuk, arXiv: 2103.01944.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewen Liu.

Additional information

Bin Zhu was supported by the National Natural Science Foundation of China (Grant No. 11805161), the Natural Science Foundation of Shandong Province (Grant No. ZR2018QA007), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2019R1A2C2003738), and the Korea Research Fellowship Program through the NRF funded by the Ministry of Science and ICT (Grant No. 2019H1D3A1A01070937). Xuewen Liu was supported by the National Natural Science Foundation of China (Grant Nos. 11947034, and 12005180), and the Natural Science Foundation of Shandong Province (Grant No. ZR2020QA083). This work was supported by the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. 2019KJJ007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Liu, X. Probing the flavor-specific scalar mediator for the muon (g — 2) deviation, the proton radius puzzle and the light dark matter production. Sci. China Phys. Mech. Astron. 65, 231011 (2022). https://doi.org/10.1007/s11433-021-1819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1819-5

Keywords

PACS number(s)

Navigation