Skip to main content
Log in

Production of an ultracold mixture of 23Na40K and 40K

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report on the production of an ultracold mixture of 2.8 × 10423Na40K molecules and 3.3 × 10540K atoms at a temperature of about 250 nK. Compared with previous studies, the number of atoms and molecules improved by a factor of about 2, and the temperature reduced by a factor of about 2. These improvements occur mainly because of the use of a crossed large-volume horizontal dipole trap to load the atoms from a cloverleaf-type magnetic trap, and a large-volume three-beam dipole trap to perform optical evaporative cooling. Besides achieving the mode-matching loading, this method avoids evaporative cooling in a decompressed cloverleaf magnetic trap, which is sensitive to magnetic field fluctuations. We characterize an atom-molecule Feshbach resonance using the ultracold atom-molecule mixture. The enhancement of particle number and temperature significantly improves the signal-to-noise ratio, and enables us to refine the location and width of the Feshbach resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009), arXiv: 0904.3175.

    Article  ADS  Google Scholar 

  2. G. Quéméner, and P. S. Julienne, Chem. Rev. 112, 4949 (2012).

    Article  Google Scholar 

  3. E. S. Shuman, J. F. Barry, and D. DeMille, Nature 467, 820 (2010), arXiv: 1103.6004.

    Article  ADS  Google Scholar 

  4. J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Nature 512, 286 (2014), arXiv: 1404.5680.

    Article  ADS  Google Scholar 

  5. L. W. Cheuk, L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, and J. M. Doyle, Phys. Rev. Lett. 121, 083201 (2018), arXiv: 1807.00740.

    Article  ADS  Google Scholar 

  6. L. Caldwell, J. A. Devlin, H. J. Williams, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Phys. Rev. Lett. 123, 033202 (2019), arXiv: 1812.07926.

    Article  ADS  Google Scholar 

  7. A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, Phys. Rev. Lett. 121, 213201 (2018), arXiv: 1808.01067.

    Article  ADS  Google Scholar 

  8. S. Ding, Y. Wu, I. A. Finneran, J. J. Burau, and J. Ye, Phys. Rev. X 10, 021049 (2020), arXiv: 2002.00056.

    Google Scholar 

  9. J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H. C. Nägerl, Science 321, 1062 (2008), arXiv: 0806.2284.

    Article  ADS  Google Scholar 

  10. F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, Phys. Rev. Lett. 101, 133005 (2008), arXiv: 0809.0061.

    Article  ADS  Google Scholar 

  11. K. K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008), arXiv: 0808.2963.

    Article  ADS  Google Scholar 

  12. P. K. Molony, P. D. Gregory, Z. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur, C. L. Blackley, J. M. Hutson, and S. L. Cornish, Phys. Rev. Lett. 113, 255301 (2014), arXiv: 1409.1485.

    Article  ADS  Google Scholar 

  13. T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H. C. Nägerl, Phys. Rev. Lett. 113, 205301 (2014), arXiv: 1405.6037.

    Article  ADS  Google Scholar 

  14. J. W. Park, S. A. Will, and M. W. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015), arXiv: 1505.00473.

    Article  ADS  Google Scholar 

  15. F. Seeßelberg, N. Buchheim, Z. K. Lu, T. Schneider, X. Y. Luo, E. Tiemann, I. Bloch, and C. Gohle, Phys. Rev. A 97, 013405 (2018), arXiv: 1709.00902.

    Article  ADS  Google Scholar 

  16. L. Liu, D. C. Zhang, H. Yang, Y. X. Liu, J. Nan, J. Rui, B. Zhao, and J. W. Pan, Phys. Rev. Lett. 122, 253201 (2019), arXiv: 1906.05974.

    Article  ADS  Google Scholar 

  17. K. K. Voges, P. Gersema, M. Meyer zum Alten Borgloh, T. A. Schulze, T. Hartmann, A. Zenesini, and S. Ospelkaus, Phys. Rev. Lett. 125, 083401 (2020), arXiv: 2008.05439.

    Article  ADS  Google Scholar 

  18. M. Guo, B. Zhu, B. Lu, X. Ye, F. Wang, R. Vexiau, N. Bouloufa-Maafa, G. Quéméner, O. Dulieu, and D. Wang, Phys. Rev. Lett. 116, 205303 (2016), arXiv: 1602.03947.

    Article  ADS  Google Scholar 

  19. T. M. Rvachov, H. Son, A. T. Sommer, S. Ebadi, J. J. Park, M. W. Zwierlein, W. Ketterle, and A. O. Jamison, Phys. Rev. Lett. 119, 143001 (2017), arXiv: 1707.03925.

    Article  ADS  Google Scholar 

  20. S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Science 327, 853 (2010), arXiv: 0912.3854.

    Article  ADS  Google Scholar 

  21. M. G. Hu, Y. Liu, D. D. Grimes, Y. W. Lin, A. H. Gheorghe, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, T. Rosenband, and K. K. Ni, Science 366, 1111 (2019), arXiv: 1907.13628.

    Article  ADS  Google Scholar 

  22. L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye, Science 363, 853 (2019).

    Article  ADS  Google Scholar 

  23. H. Yang, D. C. Zhang, L. Liu, Y. X. Liu, J. Nan, B. Zhao, and J. W. Pan, Science 363, 261 (2019), arXiv: 1807.11160.

    Article  ADS  Google Scholar 

  24. Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieckmann, and W. Ketterle, Phys. Rev. Lett. 91, 160401 (2003), arXiv: cond-mat/0306050.

    Article  ADS  Google Scholar 

  25. J. J. Zirbel, K. K. Ni, S. Ospelkaus, T. L. Nicholson, M. L. Olsen, P. S. Julienne, C. E. Wieman, J. Ye, and D. S. Jin, Phys. Rev. A 78, 013416 (2008), arXiv: 0712.3889.

    Article  ADS  Google Scholar 

  26. J. W. Park, C. H. Wu, I. Santiago, T. G. Tiecke, S. Will, P. Ahmadi, and M. W. Zwierlein, Phys. Rev. A 85, 051602 (2012), arXiv: 1110.4552.

    Article  ADS  Google Scholar 

  27. M. J. Zhu, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, J. Rui, B. Zhao, J. W. Pan, and E. Tiemann, Phys. Rev. A 96, 062705 (2017), arXiv: 1709.01260.

    Article  ADS  Google Scholar 

  28. Y. X. Liu, and B. Zhao, Chin. Phys. B 29, 023103 (2020).

    Article  ADS  Google Scholar 

  29. Z. Shi, Z. Li, P. Wang, Z. Meng, L. Huang, and J. Zhang, Chin. Phys. Lett. 35, 123701 (2018), arXiv: 1803.05108.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhao or Chun-Li Bai.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306502), the National Natural Science Foundation of China (Grant Nos. 11521063, and 11904355), the Chinese Academy of Sciences, the Anhui Initiative in Quantum Information Technologies, the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the Shanghai Rising-Star Program (Grant No. 20QA1410000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Su, Z., Cao, J. et al. Production of an ultracold mixture of 23Na40K and 40K. Sci. China Phys. Mech. Astron. 65, 223011 (2022). https://doi.org/10.1007/s11433-021-1816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1816-8

Keywords

Navigation