Skip to main content
Log in

Non-tensorial gravitational wave background in NANOGrav 12.5-year data set

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We perform the first search for an isotropic non-tensorial gravitational-wave background (GWB) allowed in general metric theories of gravity in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-year data set. By modeling the GWB as a power-law spectrum, we find strong Bayesian indication for a spatially correlated process with scalar transverse (ST) correlations whose Bayes factor versus the spatially uncorrelated common-spectrum process is 107 ± 7, but no statistically significant evidence for the tensor transverse, vector longitudinal, and scalar longitudinal polarization modes. The median and the 90% equal-tail amplitudes of ST mode are \(\cal{A}_{\text{ST}}=1.06_{-0.28}^{+0.35}\times10^{-15}\), or equivalently the energy density parameter per logarithm frequency is \(\Omega_{\text{GW}}^{\text{ST}}=1.54_{-0.71}^{+1.21}\times10^{-9}\), at frequency of 1/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. X 6, 041015 (2016), arXiv: 1606.04856

    Google Scholar 

  2. B. P. Abbott, et al. (LIGO Scientific, Virgo), Erratum: Phys. Rev. X 8, 039903 (2018).

    Google Scholar 

  3. B. P. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv: 1811.12907.

    Google Scholar 

  4. R. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021), arXiv: 2010.14527.

    Google Scholar 

  5. B. P. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. D 100, 104036 (2019), arXiv: 1903.04467.

    Article  ADS  Google Scholar 

  6. R. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. D 103, 122002 (2021), arXiv: 2010.14529.

    Article  ADS  Google Scholar 

  7. B. P. Abbott, et al. (LIGO Scientific, Virgo), Phys. Rev. D 93, 112004 (2016), arXiv: 1604.00439

    Article  ADS  Google Scholar 

  8. D. V. Martynov, Phys. Rev. D 97, 059901 (2018).

    Article  ADS  Google Scholar 

  9. M. V. Sazhin, Sov. Astron. 22, 36 (1978).

    ADS  Google Scholar 

  10. S. Detweiler, Astrophys. J. 234, 1100 (1979).

    Article  ADS  Google Scholar 

  11. R. S. Foster, and D. C. Backer, Astrophys. J. 361, 300 (1990).

    Article  ADS  Google Scholar 

  12. A. H. Jaffe, and D. C. Backer, Astrophys. J. 583, 616 (2003), arXiv: astro-ph/0210148.

    Article  ADS  Google Scholar 

  13. A. Sesana, A. Vecchio, and C. N. Colacino, Mon. Not. R. Astron. Soc. 390, 192 (2008), arXiv: 0804.4476.

    Article  ADS  Google Scholar 

  14. A. Sesana, A. Vecchio, and M. Volonteri, Mon. Not. R. Astron. Soc. 394, 2255 (2009), arXiv: 0809.3412.

    Article  ADS  Google Scholar 

  15. E. Witten, Phys. Rev. D 30, 272 (1984).

    Article  ADS  Google Scholar 

  16. C. J. Hogan, Mon. Not. R. Astron. Soc. 218, 629 (1986).

    Article  ADS  Google Scholar 

  17. R. Saito, and J. Yokoyama, Phys. Rev. Lett. 102, 161101 (2009), arXiv: 0812.4339

    Article  ADS  Google Scholar 

  18. R. Saito, and J. Yokoyama, Erratum: Phys. Rev. Lett. 107, 069901 (2011).

    ADS  Google Scholar 

  19. C. Yuan, Z. C. Chen, and Q. G. Huang, Phys. Rev. D 100, 081301 (2019), arXiv: 1906.11549.

    Article  ADS  Google Scholar 

  20. C. Yuan, Z. C. Chen, and Q. G. Huang, Phys. Rev. D 101, 043019 (2020), arXiv: 1910.09099.

    Article  ADS  Google Scholar 

  21. L. Lentati, S. R. Taylor, C. M. F. Mingarelli, A. Sesana, S. A. Sanidas, A. Vecchio, R. N. Caballero, K. J. Lee, R. van Haasteren, S. Babak, C. G. Bassa, P. Brem, M. Burgay, D. J. Champion, I. Cognard, G. Desvignes, J. R. Gair, L. Guillemot, J. W. T. Hessels, G. H. Janssen, R. Karuppusamy, M. Kramer, A. Lassus, P. Lazarus, K. Liu, S. Oslowski, D. Perrodin, A. Petiteau, A. Possenti, M. B. Purver, P. A. Rosado, R. Smits, B. Stappers, G. Theureau, C. Tiburzi, and J. P. W. Verbiest, Mon. Not. R. Astron. Soc. 453, 2577 (2015), arXiv: 1504.03692.

    Article  ADS  Google Scholar 

  22. Z. Arzoumanian, et al. (NANOGrav), Astrophys. J. 859, 47 (2018), arXiv: 1801.02617.

    Article  ADS  Google Scholar 

  23. N. Yonemaru, S. Kuroyanagi, G. Hobbs, K. Takahashi, X. J. Zhu, W. A. Coles, S. Dai, E. Howard, R. Manchester, D. Reardon, C. Russell, R. M Shannon, N. Thyagarajan, R. Spiewak, and J. B. Wang, Mon. Not. R. Astron. Soc. 501, 701 (2020), arXiv: 2011.13490.

    Article  ADS  Google Scholar 

  24. X. J. Zhu, G. Hobbs, L. Wen, W. A. Coles, J. B. Wang, R. M. Shannon, R. N. Manchester, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, S. Dai, M. J. Keith, M. Kerr, Y. Levin, D. R. Madison, S. Oslowski, V. Ravi, L. Toomey, and W. van Straten, Mon. Not. R. Astron. Soc. 444, 3709 (2014), arXiv: 1408.5129.

    Article  ADS  Google Scholar 

  25. S. Babak, A. Petiteau, A. Sesana, P. Brem, P. A. Rosado, S. R. Taylor, A. Lassus, J. W. T. Hessels, C. G. Bassa, M. Burgay, R. N. Caballero, D. J. Champion, I. Cognard, G. Desvignes, J. R. Gair, L. Guillemot, G. H. Janssen, R. Karuppusamy, M. Kramer, P. Lazarus, K. J. Lee, L. Lentati, K. Liu, C. M. F. Mingarelli, S. Oslowski, D. Perrodin, A. Possenti, M. B. Purver, S. Sanidas, R. Smits, B. Stappers, G. Theureau, C. Tiburzi, R. van Haasteren, A. Vecchio, and J. P. W. Verbiest, Mon. Not. R. Astron. Soc. 455, 1665 (2016), arXiv: 1509.02165.

    Article  ADS  Google Scholar 

  26. K. Aggarwal, et al. (NANOGrav), Astrophys. J. 880, 116 (2019), arXiv: 1812.11585.

    Article  ADS  Google Scholar 

  27. J. B. Wang, G. Hobbs, W. Coles, R. M. Shannon, X. J. Zhu, D. R. Madison, M. Kerr, V. Ravi, M. J. Keith, R. N. Manchester, Y. Levin, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, S. Dai, S. Oslowski, W. van Straten, L. Toomey, N. Wang, and L. Wen, Mon. Not. R. Astron. Soc. 446, 1657 (2015), arXiv: 1410.3323.

    Article  ADS  Google Scholar 

  28. K. Aggarwal, et al. (NANOGrav), Astrophys. J. 889, 38 (2020), arXiv: 1911.08488.

    Article  ADS  Google Scholar 

  29. Z. C. Chen, C. Yuan, and Q. G. Huang, Phys. Rev. Lett. 124, 251101 (2020), arXiv: 1910.12239.

    Article  ADS  Google Scholar 

  30. R. M. Shannon, V. Ravi, L. T. Lentati, P. D. Lasky, G. Hobbs, M. Kerr, R. N. Manchester, W. A. Coles, Y. Levin, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, S. Dai, M. J. Keith, S. Oslowski, D. J. Reardon, W. van Straten, L. Toomey, J. B. Wang, L. Wen, J. S. B. Wyithe, and X. J. Zhu, Science 349, 1522 (2015), arXiv: 1509.07320.

    Article  ADS  MathSciNet  Google Scholar 

  31. X. Siemens, J. Ellis, F. Jenet, and J. D. Romano, Class. Quantum Grav. 30, 224015 (2013), arXiv: 1305.3196.

    Article  ADS  Google Scholar 

  32. S. R. Taylor, M. Vallisneri, J. A. Ellis, C. M. F. Mingarelli, T. J. W. Lazio, and R. Haasteren, Astrophys. J. 819, L6 (2016), arXiv: 1511.05564.

    Article  ADS  Google Scholar 

  33. Z. Arzoumanian, et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv: 2009.04496.

    Article  ADS  Google Scholar 

  34. K. J. Lee, F. A. Jenet, and R. H. Price, Astrophys. J. 685, 1304 (2008).

    Article  ADS  Google Scholar 

  35. S. J. Chamberlin, and X. Siemens, Phys. Rev. D 85, 082001 (2012), arXiv: 1111.5661.

    Article  ADS  Google Scholar 

  36. J. R. Gair, J. D. Romano, and S. R. Taylor, Phys. Rev. D 92, 102003 (2015), arXiv: 1506.08668.

    Article  ADS  Google Scholar 

  37. A. Bötier, S. Tiwari, L. Philippoz, and P. Jetzer, Phys. Rev. D 102, 064051 (2020), arXiv: 2008.13520.

    Article  ADS  MathSciNet  Google Scholar 

  38. N. J. Cornish, L. O’Beirne, S. R. Taylor, and N. Yunes, Phys. Rev. Lett. 120, 181101 (2018), arXiv: 1712.07132.

    Article  ADS  Google Scholar 

  39. R. W. Hellings, and G. S. Downs, Astrophys. J. 265, L39 (1983).

    Article  ADS  Google Scholar 

  40. E. Thrane, and J. D. Romano, Phys. Rev. D 88, 124032 (2013), arXiv: 1310.5300.

    Article  ADS  Google Scholar 

  41. N. Aghanim, et al. (Planck), Astron. Astrophys. 641, A6 (2020), arXiv: 1807.06209.

    Article  Google Scholar 

  42. M. F. Alam, et al. (NANOGrav), Astrophys. J. Suppl. Ser. 252, 4 (2021), arXiv: 2005.06490.

    Article  ADS  Google Scholar 

  43. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005), arXiv: astro-ph/0412641.

    Article  ADS  Google Scholar 

  44. Z. Arzoumanian, et al. (NANOGrav), Astrophys. J. 821, 13 (2016), arXiv: 1508.03024.

    Article  ADS  Google Scholar 

  45. G. B. Hobbs, R. T. Edwards, and R. N. Manchester, Mon. Not. R. Astron. Soc. 369, 655 (2006), arXiv: astro-ph/0603381.

    Article  ADS  Google Scholar 

  46. R. T. Edwards, G. B. Hobbs, and R. N. Manchester, Mon. Not. R. Astron. Soc. 372, 1549 (2006), arXiv: astro-ph/0607664.

    Article  ADS  Google Scholar 

  47. R. van Haasteren, and M. Vallisneri, Phys. Rev. D 90, 104012 (2014), arXiv: 1407.1838.

    Article  ADS  Google Scholar 

  48. W. M. Folkner, and R. S. Park, Technical Report, IOM392R-18-004, (Jet Propulsion Laboratory, Pasadena, CA, 2018).

    Google Scholar 

  49. M. Vallisneri, et al. (NANOGrav), Astrophys. J. 893, 112 (2020), arXiv: 2001.00595.

    Article  ADS  Google Scholar 

  50. N. S. Pol, et al. (NANOGrav), Astrophys. J. Lett. 911, L34 (2021), arXiv: 2010.11950.

    Article  ADS  Google Scholar 

  51. J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, Enterprise: Enhanced numerical toolbox enabling a robust pulsar inference suite, Zenodo (2020), https://doi.org/10.5281/zenodo.4059815.

  52. J. Ellis, and R. van Haasteren, jellis18/PTMCMCSampler: Official release (2017), https://doi.org/10.5281/zenodo.1037579.

  53. R. E. Kass, and A. E. Raftery, J. Am. Stat. Assoc. 90, 773 (1995).

    Article  Google Scholar 

  54. M. D. Lee, and E.-J. Wagenmakers, Bayesian Cognitive Modeling: A Practical Course (Cambridge University Press, Cambridge, 2014).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Guo Huang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFC2201502), the National Natural Science Foundation of China (Grant Nos. 11975019, 11690021, 11991052, and 12047503), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-7009), the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. YSBR-006), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB15). We acknowledge the use of HPC Cluster of ITP-CAS and HPC Cluster of Tianhe II in National Supercomputing Center in Guangzhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZC., Yuan, C. & Huang, QG. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set. Sci. China Phys. Mech. Astron. 64, 120412 (2021). https://doi.org/10.1007/s11433-021-1797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1797-y

PACS number(s)

Navigation