Skip to main content
Log in

Ultrasound beam shift induced by short-beaked common dolphin’s (Delphinus delphis) tissues as an attenuating gradient material

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

To understand sound propagation and beam formation, the physical properties of soft tissues from the biosonar system of odontocetes should be explored. Based on the acoustic impedance distributions of biosonar systems, these processes have been examined via numerical simulations. In this study, the images of a short-beaked common dolphin (Delphinus delphis) were obtained via computed tomography. Then, the dolphin was dissected to extract tissue samples for additional examination. In addition to the speed of sound and density measurements, the acoustic attenuation coefficients of the biosonar system in the forehead were tested. The results revealed that the inner layer of the forehead was characterized using low sound speed, low density, and high attenuation. Acoustic fields and beam patterns were then evaluated by setting acoustic attenuation coefficients at different levels. Sounds propagating along the low-attenuation path had a lesser reduction in amplitude. Beam directivities in near and far fields suggested that changes in attenuation distribution would cause beam patterns to shift. These results indicated the complexity of a dolphin’s sonar emission system and helped improve our understanding of sound energy attenuation via studies on the forehead of odontocetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Moore, and S. H. Ridgway, Aquat. Mamm. 21, 55 (1995).

    Google Scholar 

  2. W. Richardson, C. J. Greene, C. Malme, and D. Thomson, Marine Mammals and Noise (Academic Press, San Diego, 1995).

    Google Scholar 

  3. M. S. Soldevilla, E. E. Henderson, G. S. Campbell, S. M. Wiggins, J. A. Hildebrand, and M. A. Roch, J. Acoust. Soc. Am. 124, 609 (2008).

    Article  ADS  Google Scholar 

  4. E. E. Henderson, J. A. Hildebrand, M. H. Smith, and E. A. Falcone, Mar. Mammal Sci. 28, 439 (2012).

    Article  Google Scholar 

  5. V. Petrella, E. Martinez, M. G. Anderson, and K. A. Stockin, Mar. Mammal Sci. 28, 479 (2012).

    Article  Google Scholar 

  6. M. Arribart, J. Ognard, C. Guintard, F. Domergue, S. Hassani, and D. Ben Salem, Histol. Embryol. 46, 204 (2017).

    Article  Google Scholar 

  7. E. Dong, Y. Zhang, Z. Song, T. Zhang, C. Cai, and N. X. Fang, Natl. Sci. Rev. 6, 921 (2019).

    Article  Google Scholar 

  8. X. Gao, Y. Zhang, W. Cao, E. Dong, Z. Song, S. Li, L. Tang, and S. Zhang, Appl. Phys. Lett. 109, 013505 (2016).

    Article  ADS  Google Scholar 

  9. M. S. Soldevilla, M. F. McKenna, S. M. Wiggins, R. E. Shadwick, T. W. Cranford, and J. A. Hildebrand, J. Exp. Biol. 208, 2319 (2005).

    Article  Google Scholar 

  10. M. F. Mckenna, J. A. Goldbogen, J. St. Leger, J. A. Hildebrand, and T. W. Cranford, Anat. Rec. 290, 1023 (2007).

    Article  Google Scholar 

  11. T. W. Cranford, M. Amundin, and K. S. Norris, J. Morphol. 228, 223 (1996).

    Article  Google Scholar 

  12. T. W. Cranford, V. Trijoulet, C. R. Smith, and P. Krysl, Bioacoustics 23, 161 (2014).

    Article  Google Scholar 

  13. Z. Song, X. Xu, J. Dong, L. Xing, M. Zhang, X. Liu, Y. Zhang, S. Li, and P. Berggren, J. Acoust. Soc. Am. 138, 3129 (2015).

    Article  ADS  Google Scholar 

  14. C. Wei, Z. Wang, Z. Song, K. Wang, D. Wang, W. W. L. Au, and Y. Zhang, PLoS ONE 10, e0121442 (2015).

    Article  Google Scholar 

  15. R. Feng, W. N. Mao, and Z. H. Chen, Acta Acust. 17, 51 (1992).

    Google Scholar 

  16. R. Kuc, and M. Schwartz, IEEE Trans. Son. Ultrason. 26, 353 (1979).

    Article  Google Scholar 

  17. R. Kuc, M. Schwartz, and L. V. Micsky, in Parametric estimation of the acoustic attenuation coefficient slope for soft tissue: Proceedings of the 1976 Ultrasonics Symposium (IEEE, New York, 1976), pp. 44–47.

    Google Scholar 

  18. R. Kuc, Proc. IEEE 73, 1159 (1985).

    Article  Google Scholar 

  19. A. Ba, A. Kovalenko, C. Aristégui, O. Mondain-Monval, and T. Brunet, Sci. Rep. 7, 40106 (2017).

    Article  ADS  Google Scholar 

  20. J. Blomberg, and B. Nordy Jensen, J. Acoust. Soc. Am. 60, 755 (1976).

    Article  ADS  Google Scholar 

  21. M. D. Gray, and P. H. Rogers, J. Acoust. Soc. Am. 141, EL83 (2017).

    Article  ADS  Google Scholar 

  22. M. L. Hua, Z. D. Qian, K. Zhou, Y. C. Wang, and T. X. Tang, Acta Thcriolog. Sin. 7, 85 (1987).

    Google Scholar 

  23. W. W. L. Au, The Sonar of Dolphins (Springer, New York, 1993), p. 277.

    Book  Google Scholar 

  24. W. W. L. Au, Acoust. Phys. 50, 454 (2004).

    Article  ADS  Google Scholar 

  25. R. A. Robb, Biomedical Imaging, Visualization, and Analysis (Wiley, New York, 1999), p. 339.

    Google Scholar 

  26. Z. Song, Y. Zhang, P. Berggren, and C. Wei, J. Acoust. Soc. Am. 141, 681 (2017).

    Article  ADS  Google Scholar 

  27. Z. Song, Y. Zhang, C. Wei, and X. Wang, Phys. Rev. E 93, 012411 (2016).

    Article  ADS  Google Scholar 

  28. W. W. L. Au, and M. Hastings, Principles of Marine Bioacoustics (Springer, New York, 2008), p. 227.

    Google Scholar 

  29. J. L. Aroyan, T. W. Cranford, J. Kent, and K. S. Norris, J. Acoust. Soc. Am. 92, 2539 (1992).

    Article  ADS  Google Scholar 

  30. M. J. Isakson, and N. P. Chotiros, in A finite element model of propagation on the Southern and Western Australian continental shelf: Proceedings of the Oceans’10 IEEE Sydney (IEEE, New York, 2010).

    Book  Google Scholar 

  31. M. J. Isakson, and N. P. Chotiros, J. Acoust. Soc. Am. 129, 1273 (2011).

    Article  ADS  Google Scholar 

  32. J. S. Perkins, and E. I. Thorsos, J. Acoust. Soc. Am. 122, 3074 (2007).

    Article  ADS  Google Scholar 

  33. J. Dong, Z. Song, S. Li, Z. Gong, K. Li, P. Zhang, Y. Zhang, and M. Zhang, J. Acoust. Soc. Am. 142, 1901 (2017).

    Article  ADS  Google Scholar 

  34. K. S. Norris, and G. W. Harvey, J. Acoust. Soc. Am. 56, 659 (1974).

    Article  ADS  Google Scholar 

  35. X. Y. Jing, Y. F. Xiao, and R. C. Jing, Acta Acust. 7, 14 (1982).

    Google Scholar 

  36. J. C. Goold, and M. R. Clarke, J. Mar. Biol. Ass. 80, 535 (2000).

    Article  Google Scholar 

  37. C. G. Flewellen, and R. J. Morris, Deep Sea Res. 25, 269 (1978).

    Article  ADS  Google Scholar 

  38. J. Blomberg, and L. E. Lindholm, Lipids 11, 153 (1976).

    Article  Google Scholar 

  39. C. Wei, W. W. L. Au, D. R. Ketten, Z. Song, and Y. Zhang, J. Acoust. Soc. Am. 141, 4179 (2017).

    Article  ADS  Google Scholar 

  40. Y. Zhang, Z. Song, X. Wang, W. Cao, and W. W. L. Au, Phys. Rev. Appl. 8, 064002 (2017).

    Article  ADS  Google Scholar 

  41. M. F. McKenna, T. W. Cranford, A. Berta, and N. D. Pyenson, Mar. Mammal Sci. 28, 690 (2012).

    Article  Google Scholar 

  42. E. L. Carstensen, and H. P. Schwan, J. Acoust. Soc. Am. 31, 305 (1959).

    Article  ADS  Google Scholar 

  43. H. L. Kuo, and J. S. Weng, J. Am. Oil. Chem. Soc. 52, 166 (1975).

    Article  Google Scholar 

  44. F. W. Kremkau, R. W. Barnes, and C. P. McGraw, J. Acoust. Soc. Am. 70, 29 (1981).

    Article  ADS  Google Scholar 

  45. M. O’Donnell, E. Jaynes, and J. Miller, J. Acoust. Soc. Am. 69, 696 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyan Wang or Yu Zhang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC1407504, and 2018YFC1407505), National Natural Science Foundation of China (Grant No. 12074323), Special Fund for Marine and Fishery Development of Xiamen (Grant No. 20CZB015HJ01), Water Conservancy Science and Technology Innovation Project of Guangdong (Grant No. 2020-16), China Postdoctoral Science Foundation (Grant No. 2020M682086), and China National Postdoctoral Program for Innovative Talents (Grant No. BX2021168). We gratefully acknowledge the help from Xiaohui Xu, affiliated with the College of Ocean and Earth Sciences, Xiamen University, during CT scanning and measurements.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11433_2021_1744_MOESM1_ESM.pdf

Ultrasound beam shift induced by short-beaked common dolphin’s (Delphinus delphis) tissues as an attenuating gradient material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Song, Z., Thornton, S.W. et al. Ultrasound beam shift induced by short-beaked common dolphin’s (Delphinus delphis) tissues as an attenuating gradient material. Sci. China Phys. Mech. Astron. 64, 108711 (2021). https://doi.org/10.1007/s11433-021-1744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1744-x

Keywords

PACS number(s)

Navigation