Skip to main content
Log in

Holographic insulator/superconductor phase transitions with excited states

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved Sturm-Liouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the metal/superconductor phase transition in the AdS black hole background. Furthermore, near the critical point, we find that the phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical potential for all the excited states in both s-wave and p-wave insulator/superconductor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).

    Article  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Zaanen, Y. W. Sun, Y. Liu, and K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, Cambridge, 2015).

    Book  Google Scholar 

  6. K. Landsteiner, Y. Liu, and Y. W. Sun, Sci. China-Phys. Mech. Astron. 63, 250001 (2020), arXiv: 1911.07978.

    Article  ADS  Google Scholar 

  7. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, J. High Energ. Phys. 2008(12), 015 (2008).

    Article  Google Scholar 

  8. S. S. Gubser, Phys. Rev. D 78, 065034 (2008), arXiv: 0801.2977.

    Article  ADS  Google Scholar 

  9. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008), arXiv: 0803.3295.

    Article  ADS  Google Scholar 

  10. S. A. Hartnoll, Class. Quantum Grav. 26, 224002 (2009), arXiv: 0903.3246.

    Article  ADS  Google Scholar 

  11. C. P. Herzog, J. Phys. A-Math. Theor. 42, 343001 (2009), arXiv: 0904.1975.

    Article  Google Scholar 

  12. G. T. Horowitz, Lect. Notes Phys. 828, 313 (2011).

    Article  ADS  Google Scholar 

  13. R. G. Cai, L. Li, L. F. Li, and R. Q. Yang, Sci. China-Phys. Mech. Astron. 58, 060401 (2015), arXiv: 1502.00437.

    Google Scholar 

  14. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. M. Peeters, V. A. Schweigert, B. J. Baelus, and P. S. Deo, Physica C-Supercond. 332, 255 (2000).

    Article  ADS  Google Scholar 

  16. D. Y. Vodolazov, and F. M. Peeters, Phys. Rev. B 66, 054537 (2002), arXiv: cond-mat/0207549.

    Article  ADS  Google Scholar 

  17. E. Demler, W. Hanke, and S. C. Zhang, Rev. Mod. Phys. 76, 909 (2004), arXiv: cond-mat/0405038.

    Article  ADS  Google Scholar 

  18. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011), arXiv: 1106.1618.

    Article  ADS  Google Scholar 

  19. H. Liu, and J. Sonner, arXiv: 1810.02367.

  20. S. S. Gubser, Phys. Rev. Lett. 101, 191601 (2008), arXiv: 0803.3483.

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Q. Wang, T. T. Hu, Y. X. Liu, J. Yang, and L. Zhao, J. High Energ. Phys. 2020(6), 13 (2020).

    Article  Google Scholar 

  22. Y. Q. Wang, H. B. Li, Y. X. Liu, and Y. Zhong, arXiv: 1911.04475.

  23. X. Qiao, D. Wang, L. OuYang, M. Wang, Q. Pan, and J. Jing, Phys. Lett. B 811, 135864 (2020), arXiv: 2007.08857.

    Article  MathSciNet  Google Scholar 

  24. R. Li, J. Wang, Y. Q. Wang, and H. Zhang, J. High Energ. Phys. 2020(11), 59 (2020).

    Article  Google Scholar 

  25. Q. Xiang, L. Zhao, and Y. Q. Wang, arXiv: 2010.03443.

  26. T. Nishioka, S. Ryu, and T. Takayanagi, J. High Energ. Phys. 2010(3), 131 (2010).

    Article  Google Scholar 

  27. Q. Pan, B. Wang, E. Papantonopoulos, J. de Oliveira, and A. B. Pavan, Phys. Rev. D 81, 106007 (2010), arXiv: 0912.2475.

    Article  ADS  Google Scholar 

  28. G. T. Horowitz, and B. Way, J. High Energ. Phys. 2010(11), 11 (2010).

    Article  Google Scholar 

  29. Y. Brihaye, and B. Hartmann, Phys. Rev. D 83, 126008 (2011), arXiv: 1101.5708.

    Article  ADS  Google Scholar 

  30. R. G. Cai, H. F. Li, and H. Q. Zhang, Phys. Rev. D 83, 126007 (2011), arXiv: 1103.5568.

    Article  ADS  Google Scholar 

  31. Y. Peng, Q. Pan, and B. Wang, Phys. Lett. B 699, 383 (2011), arXiv: 1104.2478.

    Article  ADS  Google Scholar 

  32. R. G. Cai, L. Li, H. Q. Zhang, and Y. L. Zhang, Phys. Rev. D 84, 126008 (2011), arXiv: 1109.5885.

    Article  ADS  Google Scholar 

  33. M. Montull, O. Pujolàs, A. Salvio, and P. J. Silva, J. High Energ. Phys. 2012(4), 135 (2012).

    Article  Google Scholar 

  34. C. O. Lee, Eur. Phys. J. C 72, 2092 (2012), arXiv: 1202.5146.

    Article  ADS  Google Scholar 

  35. R. G. Cai, S. He, L. Li, and Y. L. Zhang, J. High Energ. Phys. 2012(7), 88 (2012).

    Article  Google Scholar 

  36. X. M. Kuang, Y. Liu, and B. Wang, Phys. Rev. D 86, 046008 (2012), arXiv: 1204.1787.

    Article  ADS  Google Scholar 

  37. R. G. Cai, S. He, L. Li, and L. F. Li, J. High Energ. Phys. 2012(10), 107 (2012).

    Article  ADS  Google Scholar 

  38. P. Basu, D. Das, S. R. Das, and T. Nishioka, J. High Energ. Phys. 2013(3), 146 (2013).

    Article  Google Scholar 

  39. J. Erdmenger, X. H. Ge, and D. W. Pang, J. High Energ. Phys. 2013(11), 27 (2013).

    Article  Google Scholar 

  40. G. B. Qi, N. Bai, X. B. Xu, and Y. H. Gao, Commun. Theor. Phys. 60, 571 (2013).

    Article  ADS  Google Scholar 

  41. Y. Peng, Q. Pan, and Y. Liu, Nucl. Phys. B 915, 69 (2017), arXiv: 1512.08950.

    Article  ADS  Google Scholar 

  42. Y. Peng, and G. Liu, Phys. Lett. B 767, 330 (2017), arXiv: 1607.08305.

    Article  ADS  MathSciNet  Google Scholar 

  43. D. Parai, S. Gangopadhyay, and D. Ghorai, Ann. Phys. 403, 59 (2019), arXiv: 1901.10538.

    Article  ADS  Google Scholar 

  44. J. W. Lu, Y. B. Wu, L. G. Mi, H. Liao, and B. P. Dong, Eur. Phys. J. C 80, 605 (2020), arXiv: 2005.13329.

    Article  ADS  Google Scholar 

  45. D. Parai, D. Ghorai, and S. Gangopadhyay, Eur. Phys. J. C 80, 232 (2020), arXiv: 2001.06525.

    Article  ADS  Google Scholar 

  46. J. W. Lu, H. F. Li, and Y. B. Wu, Eur. Phys. J. Plus 135, 903 (2020).

    Article  Google Scholar 

  47. A. Akhavan, and M. Alishahiha, Phys. Rev. D 83, 086003 (2011), arXiv: 1011.6158.

    Article  ADS  Google Scholar 

  48. Q. Pan, J. Jing, and B. Wang, J. High Energ. Phys. 2011(11), 88 (2011).

    Article  ADS  Google Scholar 

  49. D. Roychowdhury, J. High Energ. Phys. 2013(5), 162 (2013).

    Article  Google Scholar 

  50. R. G. Cai, L. Li, L. F. Li, and R. K. Su, J. High Energ. Phys. 2013(6), 63 (2013).

    Article  Google Scholar 

  51. R. G. Cai, L. Li, L. F. Li, and Y. Wu, J. High Energ. Phys. 2014(1), 45 (2014).

    Article  ADS  Google Scholar 

  52. M. Rogatko, and K. I. Wysokinski, J. High Energ. Phys. 2016(3), 215 (2016).

    Article  Google Scholar 

  53. C. Lai, Q. Pan, J. Jing, and Y. Wang, Phys. Lett. B 757, 65 (2016), arXiv: 1601.00134.

    Article  ADS  Google Scholar 

  54. J. W. Lu, Y. B. Wu, B. P. Dong, and H. Liao, Phys. Lett. B 785, 517 (2018).

    Article  ADS  Google Scholar 

  55. Y. Lv, X. Qiao, M. Wang, Q. Pan, W. L. Qian, and J. Jing, Phys. Lett. B 802, 135216 (2020), arXiv: 2001.08364.

    Article  MathSciNet  Google Scholar 

  56. C. Lai, T. He, Q. Pan, and J. Jing, Eur. Phys. J. C 80, 247 (2020).

    Article  ADS  Google Scholar 

  57. R. Li, T. Zi, and H. Zhang, Phys. Lett. B 766, 238 (2017).

    Article  ADS  Google Scholar 

  58. G. Siopsis, and J. Therrien, J. High Energ. Phys. 2010(5), 13 (2010).

    Article  Google Scholar 

  59. H. F. Li, J. High Energ. Phys. 2013(7), 135 (2013).

    Article  Google Scholar 

  60. R. G. Cai, S. He, L. Li, and L. F. Li, J. High Energ. Phys. 2013(12), 36 (2013).

    Article  Google Scholar 

  61. R. G. Cai, L. Li, and L. F. Li, J. High Energ. Phys. 2014(1), 32 (2014).

    Article  Google Scholar 

  62. G. Siopsis, J. Therrien, and S. Musiri, Class. Quantum Grav. 29, 085007 (2012).

    Article  ADS  Google Scholar 

  63. I. M. Gelfand, and S. V. Fomin, Calculus of Variations, revised English Edition, translated and edited by R. A. Silverman (Prentice-Hall, Inc. Englewood Cliffs, 1963).

  64. D. Wang, M. Sun, Q. Pan, and J. Jing, Phys. Lett. B 785, 362 (2018), arXiv: 2001.08358.

    Article  ADS  Google Scholar 

  65. Z. Y. Nie, Y. P. Hu, and H. Zeng, Eur. Phys. J. C 80, 1015 (2020), arXiv: 2003.12989.

    Article  ADS  Google Scholar 

  66. Y. H. Huang, Q. Y. Pan, W. L. Qian, J. L. Jing, and S. L. Wang, Sci. China-Phys. Mech. Astron. 63, 230411 (2020).

    Article  ADS  Google Scholar 

  67. P. Breitenlohner, and D. Z. Freedman, Ann. Phys. 144, 249 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiYuan Pan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11775076, 11875025, 11705054, 12035005, and 11690034), and the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2018JJ3326, and 2016JJ1012). We thank Professor Yong-Qiang Wang for his helpful discussions and suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

OuYang, L., Wang, D., Qiao, X. et al. Holographic insulator/superconductor phase transitions with excited states. Sci. China Phys. Mech. Astron. 64, 240411 (2021). https://doi.org/10.1007/s11433-020-1658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1658-9

Keywords

Navigation