Skip to main content
Log in

External control of qubit-photon interaction and multi-qubit reset in a dissipative quantum network

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A quantum network is a promising quantum many-body system because of its tailored geometry and controllable interaction. Here, we propose an external control scheme for the qubit-photon interaction and multiqubit reset in a dissipative quantum network, which comprises superconducting circuit chains with microwave drives and filter-filter couplings. The traditional multiqubit reset of the quantum network requires physically disconnected qubits to prevent their entanglement. However, we use an original effect of dissipation, i.e., consuming the entanglement generated by qubits’ interaction, to achieve an external control of the multiqubit reset in an always-connected superconducting circuit. The reset time is independent of the number of qubits in the quantum network. Our proposal can tolerate considerable fluctuations in the system parameters and can be applicable to higher-dimensional quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen, and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2002).

    MATH  Google Scholar 

  2. N. D. Mermin, Quantum Computer Science: An Introduction (Cambridge University Press, New York, 2007).

    Book  MATH  Google Scholar 

  3. H. J. Kimble, Nature 453, 1023 (2008), arXiv: 0806.4195.

    Article  ADS  Google Scholar 

  4. C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, and H. J. Kimble, Science 316, 1316 (2007).

    Article  ADS  Google Scholar 

  5. J. I. Cirac, and P. Zoller, Nat. Phys. 8, 264 (2012).

    Article  Google Scholar 

  6. I. Bloch, J. Dalibard, and S. Nascimbéne, Nat. Phys. 8, 267 (2012).

    Article  Google Scholar 

  7. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, Nature 484, 195 (2012), arXiv: 1202.5955.

    Article  ADS  Google Scholar 

  8. Z. Y. Xue, Z. Q. Yin, Y. Chen, Z. D. Wang, and S. L. Zhu, Sci. China-Phys. Mech. Astron. 59, 660301 (2016).

    Article  Google Scholar 

  9. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, Science 317, 488 (2007).

    Article  ADS  Google Scholar 

  10. S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Nat. Phys. 14, 925 (2018), arXiv: 1708.03647.

    Article  Google Scholar 

  11. L. Song, H. Yang, Y. Cao, and P. Yan, arXiv: 2007.15288.

  12. A. A. Houck, H. E. Türeci, and J. Koch, Nat. Phys. 8, 292 (2012).

    Article  Google Scholar 

  13. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Nat. Phys. 2, 849 (2006), arXiv: quant-ph/0606097.

    Article  Google Scholar 

  14. S. Schmidt, and J. Koch, Ann. Phys.-Berlin 525, 395 (2013), arXiv: 1212.2070.

    Article  ADS  Google Scholar 

  15. M. Fitzpatrick, N. M. Sundaresan, A. C. Li, J. Koch, and A. A. Houck, Phys. Rev. X 7, 011016 (2017).

    Google Scholar 

  16. Y.-P. Wang, W.-L. Yang, Y. Hu, Z.-Y. Xue, and Y. Wu, npj Quantum Inform. 2, 16015 (2016).

    Article  ADS  Google Scholar 

  17. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019), arXiv: 1802.04173.

    Article  ADS  Google Scholar 

  18. W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, S. Jia, and L. Sun, Phys. Rev. Lett. 123, 080501 (2019), arXiv: 1901.05683.

    Article  ADS  Google Scholar 

  19. J. M. Oh, C. C. Venters, C. Di, A. M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B. R. So, J. Duan, and G. Dreyfuss, Nat. Commun. 11, 1 (2020).

    Article  ADS  Google Scholar 

  20. M. Gong, F. Xu, Z.-D. Li, Z. Wang, Y.-Z. Zhang, Y. Wu, S. Li, Y. Zhao, S. Wang, C. Zha, H. Deng, Z. G. Yan, H. Rong, F. T. Liang, J. Lin, Y. Xu, C. Guo, L. H. Sun, A. D. Castellano, C. Z. Peng, Y. A. Chen, X. B. Zhu, and J.-W. Pan, arXiv: 1911.12536.

  21. D. Basilewitsch, F. Cosco, N. Lo Gullo, M. Möttönen, T. Ala-Nissilä, C. P. Koch, and S. Maniscalco, New J. Phys. 21, 093054 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  22. Z. Leghtas, U. Vool, S. Shankar, M. Hatridge, S. M. Girvin, M. H. Devoret, and M. Mirrahimi, Phys. Rev. A 88, 023849 (2013), arXiv: 1303.3819.

    Article  ADS  Google Scholar 

  23. S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, Nature 504, 419 (2013), arXiv: 1307.4349.

    Article  ADS  Google Scholar 

  24. K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, and I. Siddiqi, Phys. Rev. Lett. 109, 183602 (2012), arXiv: 1207.0053.

    Article  ADS  Google Scholar 

  25. K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Phys. Rev. Lett. 110, 120501 (2013), arXiv: 1211.0491.

    Article  ADS  Google Scholar 

  26. D. J. Egger, M. Werninghaus, M. Ganzhorn, G. Salis, A. Fuhrer, P. Müller, and S. Filipp, Phys. Rev. Appl. 10, 044030 (2018), arXiv: 1802.08980.

    Article  ADS  Google Scholar 

  27. P. Magnard, P. Kurpiers, B. Royer, T. Walter, J. C. Besse, S. Gasparinetti, M. Pechal, J. Heinsoo, S. Storz, A. Blais, and A. Wallraff, Phys. Rev. Lett. 121, 060502 (2018), arXiv: 1801.07689.

    Article  ADS  Google Scholar 

  28. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, Nature 428, 50 (2004), arXiv: quant-ph/0403033.

    Article  ADS  Google Scholar 

  29. D. R. Leibrandt, J. Labaziewicz, V. Vuletić, and I. L. Chuang, Phys. Rev. Lett. 103, 103001 (2009), arXiv: 0905.0148.

    Article  ADS  Google Scholar 

  30. N. Brahms, and D. M. Stamper-Kurn, Phys. Rev. A 82, 041804 (2010), arXiv: 1005.3853.

    Article  ADS  Google Scholar 

  31. C. J. Wood, T. W. Borneman, and D. G. Cory, Phys. Rev. Lett. 112, 050501 (2014), arXiv: 1305.1029.

    Article  ADS  Google Scholar 

  32. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Nature 444, 71 (2006), arXiv: quant-ph/0607205.

    Article  ADS  Google Scholar 

  33. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Nature 444, 67 (2006), arXiv: quant-ph/0607068.

    Article  ADS  Google Scholar 

  34. Z. H. Yuan, D. Y. Wang, C. H. Bai, H. T. Yang, H. F. Wang, and A. D. Zhu, Sci. China-Phys. Mech. Astron. 63, 230311 (2020).

    Article  ADS  Google Scholar 

  35. X. P. Zhang, L. T. Shen, Z. Q. Yin, H. Z. Wu, and Z. B. Yang, Phys. Rev. A 91, 013825 (2015), arXiv: 1407.3337.

    Article  ADS  Google Scholar 

  36. H.-P. Breuer, and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

    MATH  Google Scholar 

  37. G. Agarwal, Quantum Optics, In: Springer Tracts in Modern Physics vol. 70 (Springer, Berlin, 1974).

    Google Scholar 

  38. M. H. Devoret, and R. J. Schoelkopf, Science 339, 1169 (2013).

    Article  ADS  Google Scholar 

  39. A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, J. Koch, J. M. Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 101, 080502 (2008), arXiv: 0803.4490.

    Article  ADS  Google Scholar 

  40. D. C. McKay, R. Naik, P. Reinhold, L. S. Bishop, and D. I. Schuster, Phys. Rev. Lett. 114, 080501 (2015), arXiv: 1402.7036.

    Article  ADS  Google Scholar 

  41. J. Lin, L. T. Shen, H. Z. Wu, and Z. B. Yang, Quantum Inf. Process. 15, 185 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  42. J. L. Orgiazzi, C. Deng, D. Layden, R. Marchildon, F. Kitapli, F. Shen, M. Bal, F. R. Ong, and A. Lupascu, Phys. Rev. B 93, 104518 (2016).

    Article  ADS  Google Scholar 

  43. M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, Phys. Rev. Lett. 113, 123601 (2014), arXiv: 1403.3871.

    Article  ADS  Google Scholar 

  44. P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt, Science 332, 1059 (2011).

    Article  ADS  Google Scholar 

  45. M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 482, 382 (2012), arXiv: 1109.4948.

    Article  ADS  Google Scholar 

  46. D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 140501 (2010), arXiv: 1006.0242.

    Article  ADS  Google Scholar 

  47. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J. F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105, 140502 (2010), arXiv: 1006.0251.

    Article  ADS  Google Scholar 

  48. H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011), arXiv: 1105.4652.

    Article  ADS  Google Scholar 

  49. S. Zeytinoğlu, M. Pechal, S. Berger, A. A. Abdumalikov, A. Wallraff, and S. Filipp, Phys. Rev. A 91, 043846 (2015), arXiv: 1502.03692.

    Article  ADS  Google Scholar 

  50. A. Bhardwaj, J. Kaur, M. Wuest, and F. Wuest, Nat. Commun. 8, 1 (2017).

    Article  ADS  Google Scholar 

  51. M. Steffen, M. Ansmann, R. McDermott, N. Katz, R. C. Bialczak, E. Lucero, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 97, 050502 (2006), arXiv: cond-mat/0602432.

    Article  ADS  Google Scholar 

  52. J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 184, 1234 (2013), arXiv: 1211.6518.

    Article  ADS  Google Scholar 

  53. J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. B 77, 180502 (2008), arXiv: 0712.3581.

    Article  ADS  Google Scholar 

  54. A. F. Van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A. Blais, and A. Wallraff, Science 342, 1494 (2013).

    Article  ADS  Google Scholar 

  55. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, Nat. Phys. 2, 856 (2006), arXiv: cond-mat/0609050.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Biao Yang or Zhang-Qi Yin.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875108, 11774058, 11405031, and 11347114), and the Natural Science Foundation of Fujian Province (Grant Nos. 2018J01412, and 2014J05005). Zhang-Qi Yin was supported by the National Natural Science Foundation of China (Grant No. 61771278), and the Beijing Institute of Technology Research Fund Program for Young Scholars. Luyan Sun was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304303), and the National Natural Science Foundation of China (Grant No. 11925404).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XP., Shen, LT., Zhang, Y. et al. External control of qubit-photon interaction and multi-qubit reset in a dissipative quantum network. Sci. China Phys. Mech. Astron. 64, 250311 (2021). https://doi.org/10.1007/s11433-020-1647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1647-8

PACS number(s)

Navigation