Skip to main content
Log in

Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Hydraulic fracturing has been widely applied in shale gas exploitation because it improves the permeability of the rock matrix. Fracturing stimulation parameters such as the pumping rate, the fracturing sequence, and the fracture spacing significantly influence the distribution of the stimulated reservoir volume (SRV). In this research, we built a numerical model that incorporates the hydraulic fracturing process and predicts gas production. The simulation of fracture propagation is based on the extended finite element method (XFEM), which helps to calculate aspects of the fractures and the SRV; we imported the results into a production analysis model as the initial conditions for production prediction. Using the model, we investigated the effects of some key parameters such as rock cohesion, fracture spacing, pumping rate, and fracturing sequence on the shale gas production. Our results proved that the SRV was distributed in the vicinity of the main fractures, and the SRVs were connected between the fractures in a small fracture spacing. We obtained optimal spacing by analyzing the production increment. High pumping-rate treatment greatly changes the in-situ stress around the hydraulic fractures and enlarges the field of SRV. Simultaneous fracturing treatment improves the flow conductivity of formation more than sequential fracturing. This study provides insights into the hydraulic fracturing design for economical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Xu, Z. L. Liu, Z. Zhuang, Q. L. Zeng, and T. Wang, Sci. China-Phys. Mech. Astron. 60, 24611 (2017).

    Google Scholar 

  2. T. Wang, Z. L. Liu, Q. L. Zeng, Y. Gao, and Z. Zhuang, Sci. China-Phys. Mech. Astron. 60, 84612 (2017).

    Google Scholar 

  3. F. Medeiros, E. Ozkan, and H. Kazemi, “Productivity and drainage area of fractured horizontal wells in tight gas reservoirs”, SPE Paper No. 108110, 2007.

    Google Scholar 

  4. C. Liu, X. Jin, F. Shi, D. T. Lu, H. Liu, and H. A. Wu, J. Nat. Gas Sci. Eng. 59, 427 (2018).

    Google Scholar 

  5. F. Shi, X. Wang, C. Liu, H. Liu, and H. Wu, Eng. Fract. Mech. 173, 64 (2017).

    Google Scholar 

  6. X. L. Wang, F. Shi, C. Liu, D. T. Lu, H. Liu, and H. A. Wu, J. Nat. Gas Sci. Eng. 50, 309 (2018).

    Google Scholar 

  7. W. Z. Liu, J. Yao, and Q. D. Zeng, Sci. Sin.-Tech. 49, 223 (2019).

    Google Scholar 

  8. J. Ao, H. Sun, Z. Q. Huang, L. Zhang, Q. D. Zeng, H. G. Sui, and D. Y. Fan, Sci. Sin.-Phys. Mech. Astron. 43, 1527 (2013).

    Google Scholar 

  9. M. Chen, Y. Jin, and Y. H. Lu, Sci. Sin.-Phys. Mech. Astron. 47, 114601 (2017).

    Google Scholar 

  10. B. Yuan, Y. Wang, and S. Zeng, J. Energy Resour. Technol. 140, 112901 (2018).

    Google Scholar 

  11. J. Yin, J. Xie, A. Datta-Gupta, and A. D. Hill, J. Pet. Sci. Eng. 127, 124 (2015).

    Google Scholar 

  12. C. K. Miller, G. A. Waters, and E. I. Rylander, “Evaluation of production log data from horizontal wells drilled in organic shales”, SPE Paper No. 144326, 2011.

    Google Scholar 

  13. Q. Zeng, T. Wang, Z. Liu, and Z. Zhuang, J. Appl. Mech. 84, 051004 (2017).

    ADS  Google Scholar 

  14. Q. Zeng, Z. Liu, T. Wang, Y. Gao, and Z. Zhuang, Comput. Mech. 61, 137 (2018).

    MathSciNet  Google Scholar 

  15. C. Liu, F. Shi, D. T. Lu, H. A. Wu, H. Wang, and H. Liu, J. Pet. Sci. Eng. 159, 603 (2017).

    Google Scholar 

  16. W. Yu, Z. Luo, F. Javadpour, A. Varavei, and K. Sepehrnoori, J. Pet. Sci. Eng. 113, 1 (2014).

    Google Scholar 

  17. D. Fan, J. Yao, H. Sun, H. Zeng, and W. Wang, J. Nat. Gas Sci. Eng. 24, 115 (2015).

    Google Scholar 

  18. J. Zhang, S. Huang, L. Cheng, S. Ai, B. Teng, Y. Guan, and Y. Xue, J. Nat. Gas Sci. Eng. 21, 1032 (2014).

    Google Scholar 

  19. L. Tian, C. Xiao, M. Liu, D. Gu, G. Song, H. Cao, and X. Li, J. Nat. Gas Sci. Eng. 21, 283 (2014).

    Google Scholar 

  20. X. H. Wang, X. F. Huang, K. Lin, and Y.-P. Zhao, Glob. Challenges 3, 1900006 (2019).

    Google Scholar 

  21. K. Stalgorova, and L. Mattar, SPE Reserv. Eval. Eng. 16, 246 (2013).

    Google Scholar 

  22. J. Zhang, S. Huang, L. Cheng, W. Xu, H. Liu, Y. Yang, and Y. Xue, J. Nat. Gas Sci. Eng. 24, 291 (2015).

    Google Scholar 

  23. W. Xie, X. Li, L. Zhang, J. Wang, L. Cao, and L. Yuan, J. Nat. Gas Sci. Eng. 21, 691 (2014).

    Google Scholar 

  24. W. Yu, and K. Sepehrnoori, Fuel 116, 455 (2014).

    Google Scholar 

  25. Y. Tan, H. Li, X. Zhou, B. Jiang, Y. Wang, and N. Zhang, J. Energy Resour. Technol. 140, 102905 (2018).

    Google Scholar 

  26. C. Liu, H. Liu, Y. P. Zhang, D. W. Deng, and H. A. Wu, J. Pet. Sci. Eng. 132, 86 (2015).

    Google Scholar 

  27. M. Nassir, A. Settari, and R. G. Wan, SPE J. 19, 771 (2014).

    Google Scholar 

  28. V. Sesetty, and A. Ghassemi, J. Pet. Sci. Eng. 132, 65 (2015).

    Google Scholar 

  29. N. Warpinski, S. Wolhart, and C. Wright, “Analysis and prediction of microseismicity induced by hydraulic fracturing”, SPE Paper No. 71649, 2001.

    Google Scholar 

  30. W. Shen, and Y. P. Zhao, J. Appl. Mech. 85, 031003 (2018).

    ADS  Google Scholar 

  31. X. Weng, O. Kresse, D. Chuprakov, C. E. Cohen, R. Prioul, and U. Ganguly, J. Pet. Sci. Eng. 124, 468 (2014).

    Google Scholar 

  32. B. Teng, L. Cheng, S. Huang, and H. Andy Li, J. Energy Resour. Technol. 140, 032913 (2018).

    Google Scholar 

  33. F. Zhang, and D. Yang, J. Energy Resour. Technol. 140, 032903 (2018).

    Google Scholar 

  34. W. Wang, M. Shahvali, and Y. Su, J. Energy Resour. Technol. 139, 012905 (2017).

    Google Scholar 

  35. C. Liu, X. L. Wang, D. W. Deng, Y. P. Zhang, Y. G. Zhang, H. A. Wu, and H. Liu, J. Nat. Gas Sci. Eng. 29, 329 (2016).

    Google Scholar 

  36. J. F. W. Gale, R. M. Reed, and J. Holder, Bulletin 91, 603 (2007).

    Google Scholar 

  37. A. Ghassemi, X. X. Zhou, and C. Rawal, J. Pet. Sci. Eng. 108, 118 (2013).

    Google Scholar 

  38. K. Wu, and J. E. Olson, SPE J. 20, 337 (2015).

    Google Scholar 

  39. J. Guo, X. Zhao, H. Zhu, X. Zhang, and R. Pan, J. Nat. Gas Sci. Eng. 25, 180 (2015).

    Google Scholar 

  40. O. Chang, M. Kinzel, R. Dilmore, and J. Y. Wang, J. Energy Resour. Technol. 140, 032912 (2018).

    Google Scholar 

  41. C. R. Clarkson, M. Nobakht, D. Kaviani, and T. Ertekin, SPE J. 17, 230 (2012).

    Google Scholar 

  42. B. R. Knudsen, and B. Foss, Comput. Chem. Eng. 58, 54 (2013).

    Google Scholar 

  43. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).

    Google Scholar 

  44. H. Kumar, D. Elsworth, J. P. Mathews, and C. Marone, Geofluids 16, 43 (2016).

    Google Scholar 

  45. W. C. Zhu, J. Liu, J. C. Sheng, and D. Elsworth, Int. J. Rock Mech. Min. Sci. 44, 971 (2007).

    Google Scholar 

  46. Y. Ning, Y. Jiang, H. Liu, and G. Qin, J. Nat. Gas Sci. Eng. 26, 345 (2015).

    Google Scholar 

  47. L. Klinkenberg, The Permeability of Porous Media to Liquids and Gases. in Drilling and production practice (American Petroleum Institute, New York, 1941).

    Google Scholar 

  48. F. O. Jones, and W. W. Owens, J. Pet. Tech. 32, 1631 (1980).

    Google Scholar 

  49. S. D. Butt, P. K. Frempong, C. Mukherjee, and J. Upshall, J. Appl. Geophys. 58, 1 (2005).

    ADS  Google Scholar 

  50. C. R. Clarkson, J. D. Williams-Kovacs, F. Qanbari, H. Behmanesh, and M. H. Sureshjani, J. Nat. Gas Sci. Eng. 26, 1620 (2015).

    Google Scholar 

  51. S. C. Zhang, X. Lei, Y. S. Zhou, and G. Q. Xu, Pet. Sci. 12, 674 (2015).

    ADS  Google Scholar 

  52. J. E. Olson, and K. Wu, “Sequential vs. simultaneous multizone fracturing in horizontal wells: Insights from a non-planar, multifrac numerical model”, SPE Paper No. 152602, 2012.

    Google Scholar 

  53. W. V. Grieser, R. F. Shelley, and M. Y. Soliman, “Predicting production outcome from multi-stage, horizontal Barnett completions”, SPE Paper No. 120271, 2009.

    Google Scholar 

  54. B. R. Meyer, L. W. Bazan, R. H. Jacot, and M. G. Lattibeaudiere, “Optimization of multiple transverse hydraulic fractures in horizontal wellbores”, SPE Paper No. 131732, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HengAn Wu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11525211), the Natural Science Foundation of Anhui Province (Grant No. 1908085QA32), the Fundamental Research Funds for the Central Universities (Grant No. WK2480000003), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20170457).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Shen, Y., Zhang, J. et al. Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas. Sci. China Phys. Mech. Astron. 62, 104611 (2019). https://doi.org/10.1007/s11433-019-9427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9427-x

Navigation