Skip to main content
Log in

Steady state response of an infinite beam on a viscoelastic foundation with moving distributed mass and load

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Compared with the moving concentrated load model, it is more realistic and proper to use the moving distributed mass and load model to simulate the dynamics of a train moving along a railway track. In the problem of a moving concentrated load, there is only one critical velocity, which divides the load moving velocity into two categories: subcritical and supercritical. The locus of a concentrated load demarcates the space into two parts: the waves in these two domains are called the front and rear waves, respectively. In comparison, in the problem of moving distributed mass and load, there are two critical velocities, which results in three categories of the distributed mass moving velocity. Due to the presence of the distributed mass and load, the space is divided into three domains, in which three different waves exist. Much richer and different variation patterns of wave shapes arise in the problem of the moving distributed mass and load. The mechanisms responsible for these variation patterns are systematically studied. A semi-analytical solution to the steady-state is also obtained, which recovers that of the classical problem of a moving concentrated load when the length of the distributed mass and load approaches zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Timoshenko, Method of Analysis of Statical and Dynamical Stresses in Rail (Proceedings of the Second International Congress for Applied Mechanics, Zurich, Switzerland, 1926).

    MATH  Google Scholar 

  2. J. J. Labra, Acta Mech. 22, 113 (1975).

    Google Scholar 

  3. A. D. Kerr, Int. J. Mech. Sci. 14, 71 (1972).

    Google Scholar 

  4. S. P. Timoshenko, and B. F. Langer, J. Appl. Mech. 54, 277 (1932).

    Google Scholar 

  5. M. T. Tran, K. K. Ang, and V. H. Luong, J. Sound Vib. 333, 5427 (2014).

    ADS  Google Scholar 

  6. K. K. Ang, and J. Dai, J. Sound Vib. 332, 2954 (2013).

    ADS  Google Scholar 

  7. N. H. Lim, N. H. Park, and Y. J. Kang, Comput. Struct. 81, 2219 (2003).

    Google Scholar 

  8. A. V. Metrikine, and H. A. Dieterman, Eur. J. Mech. A-Solids 16, 295 (1997).

    Google Scholar 

  9. Y. G. Chen, and B. Jin, Sci. China Ser. G-Phys. Mech. Astron. 51, 883 (2008).

    ADS  Google Scholar 

  10. B. Jin, Archive Appl. Mech. 74, 277 (2004).

    ADS  Google Scholar 

  11. A. K. Mallik, S. Chandra, and A. B. Singh, J. Sound Vib. 291, 1148 (2006).

    ADS  Google Scholar 

  12. J. T. Kenney, J. Appl. Mech. 21, 359 (1954).

    Google Scholar 

  13. Z. Dimitrovová, and J. N. Varandas, Comput. Struct. 87, 1224 (2009).

    Google Scholar 

  14. Z. Dimitrovová, Int. J. Solids Struct. 122–123, 128 (2017).

    Google Scholar 

  15. A. Nobili, J. Eng. Mech. 139, 1470 (2013).

    Google Scholar 

  16. R. Bogacz, and W. Czyczula, J. Theor. Appl. Mech. 46, 763 (2008).

    Google Scholar 

  17. A. V. Vostroukhov, and A. V. Metrikine, Int. J. Solids Struct. 40, 5723 (2003).

    Google Scholar 

  18. D. G. Duffy, J. Appl. Mech. 57, 66 (1990).

    ADS  Google Scholar 

  19. A. V. Metrikine, and H. A. Dieterman, J. Sound Vib. 201, 567 (1997).

    ADS  Google Scholar 

  20. Z. Dimitrovová, Int. J. Mech. Sci. 127, 142 (2017).

    Google Scholar 

  21. H. D. Nelson, and R. A. Conover, J. Appl. Mech. 38, 1003 (1971).

    ADS  Google Scholar 

  22. G. A. Benedetti, J. Appl. Mech. 41, 1069 (1974).

    ADS  Google Scholar 

  23. E. Esmailzadeh, and M. Ghorashi, J. Sound Vib. 184, 9 (1995).

    ADS  Google Scholar 

  24. Y. H. Lin, J. Sound Vib. 199, 697 (1997).

    ADS  Google Scholar 

  25. X. Bian, H. Jiang, C. Cheng, Y. Chen, R. Chen, and J. Jiang, Soil Dyn. Earthquake Eng. 66, 368 (2014).

    Google Scholar 

  26. W. L. Luo, Y. Xia, and S. Weng, Sci. China-Phys. Mech. Astron. 58, 084601 (2015).

    ADS  Google Scholar 

  27. K. D. Murphy, and Y. Zhang, J. Sound Vib. 237, 319 (2000).

    ADS  Google Scholar 

  28. X. M. Zhou, and Y. C. Zhao, Sci. China-Phys. Mech. Astron. 62, 014612 (2019).

    Google Scholar 

  29. J. H. Yang, Q. Z. Yuan, and Y. P. Zhao, Sci. China-Phys. Mech. Astron. 62, 124611 (2019).

    ADS  Google Scholar 

  30. J. D. Achenbach, and C. T. Sun, Int. J. Solids Struct. 1, 353 (1965).

    Google Scholar 

  31. L. Frýba, Vibration of Solids and Structures under Moving Loads (No-ordhoff International Publishing, Groningen, Netherland, 1972).

    MATH  Google Scholar 

  32. M. A. Biot, J. Appl. Mech. 4, 1 (1937).

    Google Scholar 

  33. M. Hetényi, Beams on Elastic Foundation (The University of Michigan Press, Ann Arbor, Michigan, USA, 1946).

    MATH  Google Scholar 

  34. P. M. Mathews, Z. Angew. Math. Mech. 38, 105 (1958).

    MathSciNet  Google Scholar 

  35. Y. Zhang, and K. D. Murphy, Int. J. Solids Struct. 41, 6745 (2004).

    Google Scholar 

  36. Y. H. Chen, Y. H. Huang, and C. T. Sun, J. Sound Vibr. 241, 809 (1997).

    ADS  Google Scholar 

  37. J. S. Chen, and Y. K. Chen, Int. J. Non-Linear Mech. 46, 180 (2011).

    ADS  Google Scholar 

  38. B. Tabarrok, C. Tezer, and M. Stylianou, Acta Mech. 107, 137 (1994).

    MathSciNet  Google Scholar 

  39. C. Y. Wang, Acta Mech 228, 357 (2017).

    Google Scholar 

  40. Y. Zhang, and K. D. Murphy, Acta Mech. Solid Sin. 20, 236 (2007).

    Google Scholar 

  41. K. F. Graff, Wave Motions in Elastic Solids (Clarendon Press, Oxford, UK, 1975).

    MATH  Google Scholar 

  42. C. R. Steele, J. Appl. Mech. 35, 481 (1968).

    ADS  Google Scholar 

  43. A. D. Kerr, J. Appl. Mech. 31, 491 (1964).

    ADS  Google Scholar 

  44. Y. Zhang, and X. Liu, Eur. J. Mech. A-Solids 77, 103819 (2019).

    ADS  Google Scholar 

  45. S. C. Dutta, and R. Roy, Comput. Struct. 80, 1579 (2002).

    Google Scholar 

  46. U. Lee, J. Vib. Acoust. 118, 516 (1996).

    Google Scholar 

  47. H. Zhu, Y. Zhao, Z. He, R. Zhang, and S. Ma, Sci. China-Phys. Mech. Astron. 61, 054611 (2018).

    ADS  Google Scholar 

  48. Y. Zhang, X. Liu, and Y. Wei, Eur. J. Mech. A-Solids 71, 394 (2018).

    ADS  Google Scholar 

  49. Y. Zhang, Sci. China-Phys. Mech. Astron. 59, 624602 (2016).

    Google Scholar 

  50. G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientist and Engineers, 2nd ed. (McGraw-Hill Book Company, New York, USA, 1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11772335), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB22020201), the National Key Research and Development Program of China (Grant Nos. 2016YFB1200602-09, and 2016YFB1200602-10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Steady state response of an infinite beam on a viscoelastic foundation with moving distributed mass and load. Sci. China Phys. Mech. Astron. 63, 284611 (2020). https://doi.org/10.1007/s11433-019-1513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1513-5

Keywords

Navigation