Skip to main content
Log in

Adiabatic regularization and Green’s function of a scalar field in de Sitter space: Positive energy spectrum and no trace anomaly

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In the conventional adiabatic regularization the vacuum ultraviolet divergences of a quantum field in curved spacetime are removed by subtracting the k-mode of the stress tensor to the 4th-order. For a scalar field in de Sitter space, we find that the 4th-order regularized spectral energy density is negative. Moreover, the 2nd-order regularization for minimal coupling (ξ = 0) and the 0th-order regularization for conformal coupling (ξ = \(\frac{1}{6}\)) yield a positive and UV-convergent spectral energy density and power spectrum. The regularized stress tensor in the vacuum is maximally symmetric and can drive inflation, while its k-modes representing the primordial fluctuations are nonuniformly distributed. Conventional regularization of a Green’s function in position space is generally plagued by a log IR divergence. Only in the massless case with ξ = 0 or \(\frac{1}{6}\), we can directly regularize the Green’s functions and obtain vanishing results that agree with the adiabatic regularization results. In this case, the regularized power spectrum and stress tensor are both zero, and no trace anomaly exists. To overcome the log IR divergence problem in the massive cases with ξ = 0 and \(\frac{1}{6}\), we perform Fourier transformation of the regularized power spectra and obtain the regularized analytical Green’s functions which are IR- and UV-convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Utiyama, and B. S. DeWitt, J. Math. Phys. 3, 608 (1962).

    Article  ADS  Google Scholar 

  2. R. P. Feynman, and A. R. Hibbs, Quantum Mechanics and Path Integration (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  3. P. J. E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993).

    MATH  Google Scholar 

  4. Y. Zhang, Astron. Astrophys. 464, 811 (2007); Y. Zhang, and H. X. Miao, Res. Astron. Astrophys. 9, 501 (2009), arXiv: 0812.4537; Y. Zhang, and Q. Chen, Astron. Astrophys. 581, A53 (2015), arXiv: 1408.5237; Y. Zhang, Q. Chen, and S. G. Wu, Res. Astron. Astrophys. 19, 053 (2019); B. Wang, and Y. Zhang, Phys. Rev. D 96, 103522 (2017), arXiv: 1710.06641; B. Wang, and Y. Zhang, Phys. Rev. D 98, 123019 (2018), arXiv: 1811.06142; B. Wang, and Y. Zhang, Phys. Rev. D 99, 123008 (2019), arXiv: 1905.03272; Y. Zhang, F. Qin, and B. Wang, Phys. Rev. D 96, 103523 (2017), arXiv: 1710.06639.

    Article  ADS  Google Scholar 

  5. C. P. Ma, and E. Bertschinger, Astrophys. J. 455, 7 (1995).

    Article  ADS  Google Scholar 

  6. W. Zhao, and Y. Zhang, Phys. Rev. D 74, 083006 (2006); T. Y. Xia, and Y. Zhang, Phys. Rev. D 78, 123005 (2008), arXiv: 0811.4008; Phys. Rev. D 79, 083002 (2009); Z. Cai, and Y. Zhang, Class. Quantum Grav. 29, 105009 (2012), arXiv: 1204.6683.

  7. P. Candelas, and D. J. Raine, Phys. Rev. D 12, 965 (1975).

    Article  ADS  Google Scholar 

  8. J. S. Dowker, and R. Critchley, Phys. Rev. D 13, 3224 (1976); J. S. Dowker, and R. Critchley, Phys. Rev. D 16, 3390 (1977).

    Article  ADS  Google Scholar 

  9. L. S. Brown, Phys. Rev. D 15, 1469 (1977); L. S. Brown, and J. P. Cassidy, Phys. Rev. D 15, 2810 (1977).

    Article  ADS  Google Scholar 

  10. T. S. Bunch, J. Phys. A-Math. Gen. 12, 517 (1979).

    Article  ADS  Google Scholar 

  11. S. M. Christensen, Phys. Rev. D 14, 2490 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. L. Adler, J. Lieberman, and Y. J. Ng, Ann. Phys. 106, 279 (1977).

    Article  ADS  Google Scholar 

  13. S. M. Christensen, Phys. Rev. D 17, 946 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  14. T. S. Bunch, and P. C. W. Davies, Proc. R. Soc. A-Math. Phys. Eng. Sci. 360, 117 (1978); T. S. Bunch, and P. C. W. Davies, Proc. R. Soc. A-Math. Phys. Eng. Sci. 357, 381 (1977).

    ADS  Google Scholar 

  15. T. S. Bunch, S. M. Christensen, and S. A. Fulling, Phys. Rev. D 18, 4435 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. M. Wald, Phys. Rev. D 17, 1477 (1978).

    Article  ADS  Google Scholar 

  17. S. W. Hawking, Commun. Math. Phys. 55, 133 (1977).

    Article  ADS  Google Scholar 

  18. K. Fujikawa, Phys. Rev. Lett. 44, 1733 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. S. DeWitt, Phys. Rep. 19, 295 (1975).

    Article  ADS  Google Scholar 

  21. L. Parker, and S. A. Fulling, Phys. Rev. D 9, 341 (1974).

    Article  ADS  Google Scholar 

  22. S. A. Fulling, L. Parker, and B. L. Hu, Phys. Rev. D 10, 3905 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  23. B. L. Hu, and L. Parker, Phys. Rev. D 17, 933 (1978).

    Article  ADS  Google Scholar 

  24. B. L. Hu, Phys. Rev. D 18, 4460 (1978).

    Article  ADS  Google Scholar 

  25. N. D. Birrell, Proc. R. Soc. A-Math. Phys. Eng. Sci. 361, 513 (1978).

    ADS  Google Scholar 

  26. T. S. Bunch, J. Phys. A-Math. Gen. 11, 603 (1978).

    Article  ADS  Google Scholar 

  27. T. S. Bunch, J. Phys. A-Math. Gen. 13, 1297 (1980).

    Article  ADS  Google Scholar 

  28. P. R. Anderson, and L. Parker, Phys. Rev. D 36, 2963 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  29. T. S. Bunch, and L. Parker, Phys. Rev. D 20, 2499 (1979).

    Article  ADS  Google Scholar 

  30. N. D. Birrell, and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Book  MATH  Google Scholar 

  31. L. Parker, and D. J. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity (Cambridge University Press, Cambridge, 2009).

    Book  MATH  Google Scholar 

  32. L. Parker, arXiv: hep-th/0702216.

  33. T. Markkanen, and A. Tranberg, J. Cosmol. Astropart. Phys. 2013, 045 (2013), arXiv: 1303.0180.

  34. D. G. Wang, Y. Zhang, and J. W. Chen, Phys. Rev. D 94, 044033 (2016), arXiv: 1512.03134.

  35. Y. Zhang, and B. Wang, J. Cosmol. Astropart. Phys. 2018(11), 006 (2018), arXiv: 1805.12304.

    Article  Google Scholar 

  36. Y. Zhang, Phys. Lett. B 340, 18 (1994).

    Article  ADS  Google Scholar 

  37. T. Markkanen, J. Cosmol. Astropart. Phys. 2018, 001 (2018), arXiv: 1712.02372.

    Google Scholar 

  38. G. N. Watson, Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1958).

    Google Scholar 

  39. I. S. Gradshteyn, and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic Press, San Diego, 1980).

    MATH  Google Scholar 

  40. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010).

    MATH  Google Scholar 

  41. B. Chakraborty, J. Math. Phys. 14, 188 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ye, X. & Wang, B. Adiabatic regularization and Green’s function of a scalar field in de Sitter space: Positive energy spectrum and no trace anomaly. Sci. China Phys. Mech. Astron. 63, 250411 (2020). https://doi.org/10.1007/s11433-019-1451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1451-1

Key words

Navigation