Skip to main content
Log in

Large transverse thermoelectric figure of merit in a topological Dirac semimetal

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The Seebeck effect encounters a few fundamental constraints hindering its thermoelectric (TE) conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the Wiedemann-Franz (WF) law that makes independent optimization of the corresponding electrical and thermal conductivities impossible. Here, we demonstrate that in the topological Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT ≈ 0.5 in a small field of 2 T and it significantly surmounts its longitudinal counterpart for any field. A large Nernst effect is genetically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the topologically trivial and nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. J. Snyder, and E. S. Toberer, Nat. Mater 7, 105 (2006).

    Article  ADS  Google Scholar 

  2. J. He, and T. M. Tritt, Science 357, eaak9997 (2017).

    Article  Google Scholar 

  3. G. A. Slack, CRC Handbook of Thermoelectrics, D. M. Rowe, ed (CRC Press, Boca Raton, 1995).

  4. L. Müchler, F. Casper, B. Yan, S. Chadov, and C. Felser, Phys. Status. Solidi. RRL 7, 91 (2013), arXiv: 1209.6097.

    Article  Google Scholar 

  5. K. Pal, S. Anand, and U. V. Waghmare, J. Mater. Chem. C 3, 12130 (2015).

    Article  Google Scholar 

  6. H. Shi, D. Parker, M. H. Du, and D. J. Singh, Phys. Rev. Appl. 3, 014004 (2015), arXiv: 1412.5407.

    Article  ADS  Google Scholar 

  7. Devender, P. Gehring, A. Gaul, A. Hoyer, K. Vaklinova, R. J. Mehta, M. Burghard, T. Borca-Tasciuc, D. J. Singh, K. Kern, and G. Ramanath, Adv. Mater. 28, 6436 (2016).

    Article  Google Scholar 

  8. R. Lundgren, P. Laurell, and G. A. Fiete, Phys. Rev. B 90, 165115 (2014), arXiv: 1407.1435.

    Article  ADS  Google Scholar 

  9. Y. Xu, Z. Gan, and S. C. Zhang, Phys. Rev. Lett. 112, 226801 (2014), arXiv: 1403.3137.

    Article  ADS  Google Scholar 

  10. R. Takahashi, and S. Murakami, Semicond. Sci. Technol. 27, 124005 (2012).

    Article  ADS  Google Scholar 

  11. S. Wang, B. C. Lin, A. Q. Wang, D. P. Yu, and Z. M. Liao, Adv. Phys.-X 2, 518 (2017).

    Google Scholar 

  12. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018), arXiv: 1705.01111.

    Article  ADS  Google Scholar 

  13. H. Wang, X. Luo, W. Chen, N. Wang, B. Lei, F. Meng, C. Shang, L. Ma, T. Wu, X. Dai, Z. Wang, and X. Chen, Sci. Bull. 63, 411 (2018).

    Article  Google Scholar 

  14. B. Skinner, and L. Fu, Sci. Adv. 4, eaat2621 (2018), arXiv: 1706.06117.

    Article  ADS  Google Scholar 

  15. W. M. Yim, and A. Amith, Solid-State Electron. 15, 1141 (1972).

    Article  ADS  Google Scholar 

  16. H. J. Goldsmid, Br. J. Appl. Phys. 14, 271 (1963).

    Article  ADS  Google Scholar 

  17. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Heidelberg, 2009).

    Google Scholar 

  18. K. Behnia, M. A. Méasson, and Y. Kopelevich, Phys. Rev. Lett. 98, 076603 (2007).

    Article  ADS  Google Scholar 

  19. A. Pourret, K. Behnia, D. Kikuchi, Y. Aoki, H. Sugawara, and H. Sato, Phys. Rev. Lett. 96, 176402 (2006).

    Article  ADS  Google Scholar 

  20. C. Fu, S. N. Guin, S. J. Watzman, G. Li, E. Liu, N. Kumar, V. Süß, W. Schnelle, G. Auffermann, C. Shekhar, Y. Sun, J. Gooth, and C. Felser, Energy Environ. Sci. 11, 2813 (2018).

    Article  Google Scholar 

  21. D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Phys. Rev. Lett. 97, 026603 (2006).

    Article  ADS  Google Scholar 

  22. G. Sharma, P. Goswami, and S. Tewari, Phys. Rev. B 93, 035116 (2016), arXiv: 1507.05606.

    Article  ADS  Google Scholar 

  23. J. Noky, J. Gooth, C. Felser, and Y. Sun, Phys. Rev. B 98, 241106 (R) (2018), arXiv: 1807.07843.

    Article  ADS  Google Scholar 

  24. F. Caglieris, C. Wuttke, S. Sykora, V. Süss, C. Shekhar, C. Felser, B. Büchner, and C. Hess, Phys. Rev. B 98, 201107(R) (2018).

    Article  ADS  Google Scholar 

  25. T. Liang, J. Lin, Q. Gibson, T. Gao, M. Hirschberger, M. Liu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 118, 136601 (2017), arXiv: 1610.02459.

    Article  ADS  Google Scholar 

  26. G. Sharma, C. Moore, S. Saha, and S. Tewari, Phys. Rev. B 96, 195119 (2017), arXiv: 1605.00299.

    Article  ADS  Google Scholar 

  27. S. J. Watzman, T. M. McCormick, C. Shekhar, S. C. Wu, Y. Sun, A. Prakash, C. Felser, N. Trivedi, and J. P. Heremans, Phys. Rev. B 97, 161404 (R) (2018), arXiv: 1703.04700.

    Article  ADS  Google Scholar 

  28. C. Zhang, T. Zhou, S. Liang, J. Cao, X. Yuan, Y. Liu, Y. Shen, Q. Wang, J. Zhao, Z. Yang, and F. Xiu, Chin. Phys. B 25, 017202 (2016).

    Article  ADS  Google Scholar 

  29. L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014), arXiv: 1404.2557.

    Article  ADS  Google Scholar 

  30. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2015), arXiv: 1404.7794.

    Article  ADS  Google Scholar 

  31. M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, Inorg. Chem. 53, 4062 (2014).

    Article  Google Scholar 

  32. J. Gooth, F. Menges, N. Kumar, V. Süß, C. Shekhar, Y. Sun, U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann, Nat. Commun. 9, 4093 (2018).

    Article  ADS  Google Scholar 

  33. J. Zhu, T. Feng, S. Mills, P. Wang, X. Wu, L. Zhang, S. T. Pantelides, X. Du, and X. Wang, ACS Appl. Mater. Interfaces 10, 40740 (2018).

    Article  Google Scholar 

  34. T. Liang, Q. Gibson, J. Xiong, M. Hirschberger, S. P. Koduvayur, R. J. Cava, and N. P. Ong, Nat. Commun. 4, 2696 (2013).

    Article  ADS  Google Scholar 

  35. K. Behnia, and H. Aubin, Rep. Prog. Phys. 79, 046502 (2016), arXiv: 1601.06647.

    Article  ADS  Google Scholar 

  36. U. Stockert, R. D. Dos Reis, M. O. Ajeesh, S. J. Watzman, M. Schmidt, C. Shekhar, J. P. Heremans, C. Felser, M. Baenitz, and M. Nicklas, J. Phys.-Condens. Matter 29, 325701 (2017), arXiv: 1704.02241.

    Article  Google Scholar 

  37. Z. Zhu, X. Lin, J. Liu, B. Fauqué, Q. Tao, C. Yang, Y. Shi, and K. Behnia, Phys. Rev. Lett. 114, 176601 (2015), arXiv: 1502.07797.

    Article  ADS  Google Scholar 

  38. S. N. Guin, P. Vir, Y. Zhang, N. Kumar, S. J. Watzman, C. Fu, E. Liu, K. Manna, W. Schnelle, J. Gooth, C. Shekhar, Y. Sun, and C. Felser, Adv. Mater. 31, 1806622 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PeiJie Sun.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Hu, S., Lyu, M. et al. Large transverse thermoelectric figure of merit in a topological Dirac semimetal. Sci. China Phys. Mech. Astron. 63, 237011 (2020). https://doi.org/10.1007/s11433-019-1445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1445-4

Keywords

Navigation