Skip to main content
Log in

Beyond mean-field approach for pear-shaped hypernuclei

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We develop both relativistic mean field and beyond approaches for hypernuclei with possible quadrupole-octupole deformation or pear-like shapes based on relativistic point-coupling energy density functionals. The symmetries broken in the mean-field states are recovered with parity, particle-number and angular momentum projections. We take \(\begin{array}{c}21\\ \Lambda\end{array}{\rm{Ne}}\) as an example to illustrate the method, where the Λ hyperon is put on one of the two lowest-energy orbits (labeled as Λsp), respectively. We find that the Λ hyperon in both cases disfavors the formation of a reflection-asymmetric molecular-like 16O+α structure in 20Ne, which is consistent with the Nilsson diagram for the hyperon in (β2, β3) deformation plane. In particular, we show that the negative-parity states with the configuration 20Ne(Kπ = 0) ⊗ Λs are close in energy to those with the configuration 20Ne(Kπ = 0+) ⊗ Λp, even though they have very different structures. The Λsp) becomes more and more concentrated around the bottom (top) of the “pear” with the increase of octupole deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Glendenning, Compact Stars (Springer-Verlag, New York, 2000).

    Book  MATH  Google Scholar 

  2. T. Motoba, H. Bando, and K. Ikeda, Prog. Theor. Phys. 70, 189 (1983).

    Article  ADS  Google Scholar 

  3. P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  4. D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  5. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).

    Article  ADS  Google Scholar 

  6. K. Hagino, and J. M. Yao, in Relativistic Density Functional for Nuclear Structure, edited by J. Meng, Vol. 10 (World Scientific, Singapore, 2016), p. 263.

    Article  Google Scholar 

  7. M. T. Win, and K. Hagino, Phys. Rev. C 78, 054311 (2008), arXiv: 0808.3303.

    Article  ADS  Google Scholar 

  8. B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 84, 014328 (2011), arXiv: 1104.4638.

    Article  ADS  Google Scholar 

  9. R. Xu, C. Wu, and Z. Ren, Nucl. Phys. A 933, 82 (2015).

    Article  ADS  Google Scholar 

  10. H. Y. Sang, X. S. Wang, H. F. Lü, J. M. Yao, and H. Sagawa, Phys. Rev. C 88, 064304 (2013).

    Article  ADS  Google Scholar 

  11. W. X. Xue, J. M. Yao, K. Hagino, Z. P. Li, H. Mei, and Y. Tanimura, Phys. Rev. C 91, 024327 (2015), arXiv: 1412.4201.

    Article  ADS  Google Scholar 

  12. X. R. Zhou, H. J. Schulze, H. Sagawa, C. X. Wu, and E. G. Zhao, Phys. Rev. C 76, 034312 (2007).

    Article  ADS  Google Scholar 

  13. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 97, 064318 (2018), arXiv: 1804.06558.

    Article  ADS  Google Scholar 

  14. M. Isaka, M. Kimura, A. Doté, and A. Ohnishi, Phys. Rev. C 87, 021304 (2013).

    Article  ADS  Google Scholar 

  15. B. N. Lu, E. Hiyama, H. Sagawa, and S. G. Zhou, Phys. Rev. C 89, 044307 (2014), arXiv: 1403.5866.

    Article  ADS  Google Scholar 

  16. X. Y. Wu, H. Mei, J. M. Yao, and X. R. Zhou, Phys. Rev. C 95, 034309 (2017), arXiv: 1703.01715.

    Article  ADS  Google Scholar 

  17. M. Isaka, M. Kimura, A. Dote, and A. Ohnishi, Phys. Rev. C 83, 044323 (2011), arXiv: 1104.3940.

    Article  ADS  Google Scholar 

  18. M. Isaka, M. Kimura, A. Doté, and A. Ohnishi, Phys. Rev. C 83, 054304 (2011).

    Article  ADS  Google Scholar 

  19. M. Isaka, H. Homma, M. Kimura, A. Doté, and A. Ohnishi, Phys. Rev. C 85, 034303 (2012), arXiv: 1109.1116.

    Article  ADS  Google Scholar 

  20. J. W. Cui, X. R. Zhou, and H. J. Schulze, Phys. Rev. C 91, 054306 (2015).

    Article  ADS  Google Scholar 

  21. J. W. Cui, X. R. Zhou, L. X. Guo, and H. J. Schulze, Phys. Rev. C 95, 024323 (2017).

    Article  ADS  Google Scholar 

  22. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 90, 064302 (2014), arXiv: 1406.4604.

    Article  ADS  Google Scholar 

  23. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 91, 064305 (2015), arXiv: 1504.04924.

    Article  ADS  Google Scholar 

  24. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 93, 044307 (2016), arXiv: 1602.01588.

    Article  ADS  Google Scholar 

  25. H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 96, 014308 (2017), arXiv: 1704.02258.

    Article  ADS  Google Scholar 

  26. H. Mei, K. Hagino, and J. M. Yao, Phys. Rev. C 93, 011301 (2016), arXiv: 1511.02957.

    Article  ADS  Google Scholar 

  27. H. J. Xia, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 60, 102021 (2017), arXiv: 1705.04904.

    Article  ADS  Google Scholar 

  28. J. M. Yao, E. F. Zhou, and Z. P. Li, Phys. Rev. C 92, 041304 (2015), arXiv: 1507.03298.

    Article  ADS  Google Scholar 

  29. E. F. Zhou, J. M. Yao, Z. P. Li, J. Meng, and P. Ring, Phys. Lett. B 753, 227 (2016), arXiv: 1510.05232.

    Article  ADS  Google Scholar 

  30. T. Yamada, K. Ikeda, H. Bando, and T. Motoba, Prog. Theor. Phys. 71, 985 (1984).

    Article  ADS  Google Scholar 

  31. E. Hiyama, and T. Yamada, Prog. Particle Nucl. Phys. 63, 339 (2009).

    Article  ADS  Google Scholar 

  32. M. Isaka, M. Kimura, A. Doté, and A. Ohnishi, Phys. Rev. C 83, 054304 (2011).

    Article  ADS  Google Scholar 

  33. T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C 65, 044308 (2002).

    Article  ADS  Google Scholar 

  34. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010), arXiv: 1002.1789.

    Article  ADS  Google Scholar 

  35. Y. Tanimura, and K. Hagino, Phys. Rev. C 85, 014306 (2012), arXiv: 1111.1488.

    Article  ADS  Google Scholar 

  36. J. M. Yao, J. Meng, P. Ring, and D. Vretenar, Phys. Rev. C 81, 044311 (2010), arXiv: 0912.2650.

    Article  ADS  Google Scholar 

  37. J. M. Yao, J. Meng, P. Ring, and D. P. Arteaga, Phys. Rev. C 79, 044312 (2009), arXiv: 0903.5027.

    Article  ADS  Google Scholar 

  38. J. M. Yao, K. Hagino, Z. P. Li, J. Meng, and P. Ring, Phys. Rev. C 89, 054306 (2014), arXiv: 1403.4812.

    Article  ADS  Google Scholar 

  39. J. Zhao, B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 95, 014320 (2017), arXiv: 1606.08994.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangMing Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Wu, X., Mei, H. et al. Beyond mean-field approach for pear-shaped hypernuclei. Sci. China Phys. Mech. Astron. 62, 42011 (2019). https://doi.org/10.1007/s11433-018-9308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9308-0

Keywords

Navigation