Skip to main content
Log in

Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu—Part II: Numerical analysis

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

To analyze the interaction between wind turbines and the atmospheric boundary layer, we integrated a large-eddy simulation with an actuator line model and examined the characteristics of wind-turbine loads and wakes with reference to a corresponding experiment in Gansu. In the simulation, we set the wind turbine to have a rotor diameter of 14.8 m and a tower height of 15.4 m in the center of an atmospheric boundary layer with a 10.6° yaw angle. The results reveal an obviously skewed wake structure behind the rotor due to the thrust component normal to the flow direction. The power spectra of the inflow fluctuation velocity exhibit a region of −5/3 slope, which confirms the ability of large-eddy simulations to reproduce the energy cascade from larger to smaller scales. We found there to be more energy in the power spectrum of the axial velocity, which shows that coherent turbulence structures have more energy in the horizontal direction. By the conjoint analysis of atmospheric turbulence and windturbine loads, we found that when the inflow wind direction changes rapidly, the turbulence kinetic energy and coherent turbulence kinetic energy in the atmospheric turbulence increase, which in turn causes fluctuations in the wind turbine load. Furthermore, anisotropic atmospheric turbulence causes an asymmetric load cycle, which imposes a strike by the turbine blade on the shaft, thereby increasing the fatigue load on the shaft. Our main conclusion is that the atmospheric boundary layer has a strong effect on the evolution of the wake and the structural response of the turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vautard, F. Thais, I. Tobin, F. M. Bréon, J. G. Devezeaux de Lavergne, A. Colette, P. Yiou, and P. M. Ruti, Nat. Commun. 5, 3196 (2014).

    Article  ADS  Google Scholar 

  2. J. D. Mirocha, B. Kosovic, M. L. Aitken, and J. K. Lundquist, J. Renew. Sustain. Energy 6, 013104 (2014).

    Article  Google Scholar 

  3. M. Z. Jacobson, C. L. Archer, and W. Kempton, Nat. Clim Change 4, 195 (2014).

    Article  ADS  Google Scholar 

  4. H. Lu, and F. Porté-Agel, Phys. Fluids 23, 065101 (2011).

    Article  ADS  Google Scholar 

  5. S. B. Roy, S. W. Pacala, and R. L. Walko, J. Geophys. Res. 109, D19101 (2004).

    Article  ADS  Google Scholar 

  6. S. Shamsoddin, and F. Porté-Agel, Bound.-Layer Meteorol. 163, 1 (2017).

    Article  ADS  Google Scholar 

  7. L. P. Chamorro, and F. Porté-Agel, Bound.-Layer Meteorol. 136, 515 (2010).

    Article  ADS  Google Scholar 

  8. M. A. Carper, and F. Porté-Agel, Bound.-Layer Meteorol. 126, 157 (2007).

    Article  ADS  Google Scholar 

  9. M. A. Carper, and F. Porté-Agel, Bound.-Layer Meteorol. 127, 73 (2008).

    Article  ADS  Google Scholar 

  10. M. Bastankhah, and F. Porté-Agel, Energies 10, 908 (2017).

    Article  Google Scholar 

  11. M. J. Churchfield, S. Lee, J. Michalakes, and P. J. Moriarty, J. Turbul 13, N14 (2012).

    Article  ADS  Google Scholar 

  12. G. España, S. Aubrun, S. Loyer, and P. Devinant, J. Wind Eng. Industrial Aerodyn. 101, 24 (2012).

    Article  Google Scholar 

  13. S. Shamsoddin, and F. Porté-Agel, J. Fluid Mech. 837, R3 (2018).

    Article  ADS  Google Scholar 

  14. R. E. Keck, M. de Maré, M. J. Churchfield, S. Lee, G. Larsen, and H. Aagaard Madsen, Wind Energ. 17, 1689 (2015).

    Article  ADS  Google Scholar 

  15. M. Abkar, and F. Porté-Agel, Phys. Fluids 27, 035104 (2015).

    Article  ADS  Google Scholar 

  16. J. Hong, M. Toloui, L. P. Chamorro, M. Guala, K. Howard, S. Riley, J. Tucker, and F. Sotiropoulos, Nat. Commun. 5, 4216 (2014).

    Article  ADS  Google Scholar 

  17. M. S. Adaramola, and P. Å. Krogstad, Renew. Energy 36, 2078 (2011).

    Article  Google Scholar 

  18. L. A. Martínez-Tossas, M. J. Churchfield, and S. Leonardi, Wind Energ. 18, 1047 (2015).

    Article  ADS  Google Scholar 

  19. K. Nilsson, S. Ivanell, K. S. Hansen, R. Mikkelsen, J. N. Sørensen, S. P. Breton, and D. Henningson, Wind Energ. 18, 449 (2015).

    Article  ADS  Google Scholar 

  20. C. Q. Liu, and X. S. Cai, Sci. China-Phys. Mech. Astron. 60, 084731 (2017).

    Article  ADS  Google Scholar 

  21. Y. Q. Wang, and C. Q. Liu, Sci. China-Phys. Mech. Astron. 60, 114712 (2017).

    Article  ADS  Google Scholar 

  22. Q. Hu, Y. Li, Y. Di, and J. Chen, J. Renew. Sustain. Energy 9, 064501 (2017).

    Article  Google Scholar 

  23. G. Wang, and X. Zheng, J. Fluid Mech. 802, 464 (2016).

    Article  ADS  Google Scholar 

  24. L. J. Vermeer, J. N. Sørensen, and A. Crespo, Prog. Aerosp. Sci. 39, 467 (2003).

    Article  Google Scholar 

  25. F. Porté-Agel, Y. T. Wu, H. Lu, and R. J. Conzemius, J. Wind Eng. Ind. Aerodyn. 99, 154 (2011).

    Article  Google Scholar 

  26. M. Calaf, C. Meneveau, and J. Meyers, Phys. Fluids 22, 015110 (2010).

    Article  ADS  Google Scholar 

  27. A. Jimenez, A. Crespo, E. Migoya, and J. Garcia, Environ. Res. Lett. 3, 015004 (2008).

    Article  ADS  Google Scholar 

  28. N. Marjanovic, J. D. Mirocha, B. Kosovic, J. K. Lundquist, and F. K. Chow, J. Renew. Sustain. Energy 9, 063308 (2017).

    Article  Google Scholar 

  29. L. A. Martínez-Tossas, M. J. Churchfield, and C. Meneveau, Wind Energ. 20, 1083 (2017).

    Article  ADS  Google Scholar 

  30. M. Shives, and C. Crawford, Renew. Energy 92, 273 (2016).

    Article  Google Scholar 

  31. M. F. Howland, J. Bossuyt, L. A. Martínez-Tossas, J. Meyers, and C. Meneveau, J. Renew. Sustain. Energy 8, 043301 (2016).

    Article  Google Scholar 

  32. J. N. Sørensen, and W. Z. Shen, J. Fluids Eng. 124, 393 (2002).

    Article  Google Scholar 

  33. N. Troldborg, J. N. Sørensen, and R. Mikkelsen, J. Phys.-Conf. Ser. 75, 012063 (2007).

    Article  Google Scholar 

  34. D. Li, T. Guo, Y. Li, J. Hu, Z. Zheng, Y. Li, Y. Di, W. Hu, and R. Li, Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-018-9219-y.

  35. A. S. Ghate, and S. K. Lele, J. Fluid Mech. 819, 494 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  36. N. Troldborg, Actuator Line Modeling of Wind Turbine Wakes, Dissertation for the Doctoral Degree (Technical University of Denmark, Denmark, 2009), p. 13.

    Google Scholar 

  37. C. H. Moeng, J. Atmos. Sci. 41, 2052 (1984).

    Article  ADS  Google Scholar 

  38. C. M. Rhie, and W. L. Chow, AIAA J. 21, 1525 (1983).

    Article  ADS  Google Scholar 

  39. I. H. Abbott, and A. E. Von Doenhoff, Theory of Wing Sections. Including a Summary of Airfoil Data (Dover, NewYork, 1959).

    Google Scholar 

  40. L. A. Viterna, and R. D. Corrigan, Fixed Pitch Rotor Performance of Large Horizontal Axis Wind Turbines, Technical Report (NASA, 1982).

    Google Scholar 

  41. P. K. Kundu, and I. M. Cohen, Fluid Mechanics (Elsevier, Burlington, 2010), pp. 541–564.

    Google Scholar 

  42. R. P. Coleman, A. M. Feingold, and C. W. Stempin, Evaluation of the Induced-Velocity Field of an Idealized Helicoptor Rotor, Technical Report (NASA, 1945).

    Google Scholar 

  43. J. M. Jonkman, and M. L. Buhl, FAST User’s Guide, Technical Report (NREL, 2005).

    Google Scholar 

  44. Y. Li, J. H. Yi, H. Song, Q. Wang, Z. Yang, N. D. Kelley, and K. S. Lee, Appl. Phys. Lett. 105, 023902 (2014).

    Article  ADS  Google Scholar 

  45. B. J. Jonkman, TurbSim User’s Guide, Technical Report (NREL, 2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to RenNian Li, Ye Li or WenRui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Gao, Z., Li, D. et al. Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu—Part II: Numerical analysis. Sci. China Phys. Mech. Astron. 61, 94712 (2018). https://doi.org/10.1007/s11433-018-9214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9214-1

Keywords

Navigation