Skip to main content
Log in

DNS study on bursting and intermittency in late boundary layer transition

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Experimental and numerical investigations have suggested the existence of a strong correlation between the passage of coherent structures and events of bursting and intermittency. However, a detailed cause-and-effect study on the subject is rarely found in the literature due to the complexity and the nonlinear multiscale nature of turbulent flows. The primary goal of this research is to explore the motion and evolution of coherent structures during late transition, whose structure is much more ordered than that of fully developed turbulence, and their relationship with events of bursting and intermittency based on a verified high-order direct numerical simulation (DNS). The computation was carried out on a flat plate at Reynolds number 1000 (based on the inflow displacement thickness) with an inflow Mach number 0.5. It is concluded that bursting and intermittency detected by stationary sensors in a transitional boundary layer actually result from the passage and development of vortical structures, and it would be more rational to design transitional turbulence models based on modelling the moving vortical structures rather than the statistical features and experimental experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, J. Fluid Mech. 30, 741 (1967).

    Article  ADS  Google Scholar 

  2. H. T. Kim, S. J. Kline, and W. C. Reynolds, J. Fluid Mech. 50, 133 (1971).

    Article  ADS  Google Scholar 

  3. J. Kim, P. Moin, and R. Moser, J. Fluid Mech. 177, 133 (1987).

    Article  ADS  Google Scholar 

  4. R. F. Blackwelder, and R. E. Kaplan, J. Fluid Mech. 76, 89 (1976).

    Article  ADS  Google Scholar 

  5. K. N. Rao, R. Narasimha, and M. A. Badri Narayanan, J. Fluid Mech. 48, 339 (1971).

    Article  ADS  Google Scholar 

  6. M. Nagata, J. Fluid Mech. 219, 519 (1990).

  7. G. Kawahara, and S. Kida, J. Fluid Mech. 449, 291 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Waleffe, Phys. Fluids 15, 1517 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Itano, and S. Toh, J. Phys. Soc. Jpn. 70, 703 (2001).

    Article  ADS  Google Scholar 

  10. J. Jiménez, and P. Moin, J. Fluid Mech. 225, 213 (1991).

    Article  ADS  Google Scholar 

  11. J. Jiménez, G. Kawahara, M. P. Simens, M. Nagata, and M. Shiba, Phys. Fluids 17, 015105 (2005).

    Article  ADS  Google Scholar 

  12. J. Jiménez, Phys. Fluids 27, 065102 (2015).

    Article  ADS  Google Scholar 

  13. J. M. Wallace, J. Turbul. 13, N53 (2012).

    Article  Google Scholar 

  14. S. K. Robinson, Annu. Rev. Fluid Mech. 23, 601 (1991).

    Article  ADS  Google Scholar 

  15. W. Schoppa, and F. Hussain, J. Fluid Mech. 453, 57 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Fiedler, and M. R. Head, J. Fluid Mech. 25, 719 (1966).

    Article  ADS  Google Scholar 

  17. M. Onorato, R. Camussi, and G. Iuso, Phys. Rev. E 61, 1447 (2000).

    Article  ADS  Google Scholar 

  18. S. Douady, Y. Couder, and M. E. Brachet, Phys. Rev. Lett. 67, 983 (1991).

    Article  ADS  Google Scholar 

  19. R. V. Field Jr., and M. Grigoriu, Appl. Math. Model. 35, 1142 (2011).

    Article  MathSciNet  Google Scholar 

  20. K. M. Casper, S. J. Beresh, J. F. Henfling, R. W. Spillers, and B. O. Pruett, Toward transition statistics measured on a 7-degree hypersonic cone for turbulent spot modeling, AIAA paper No. 2014-0427, 2014.

    Google Scholar 

  21. L. J. DeChant, Laminar turbulent intermittency models: determination of functional behavior using an asymptotic differential equation argument, AIAA paper No. 2015-0586, 2015.

    Google Scholar 

  22. C. Liu, and L. Chen, Comp. Fluids 45, 129 (2011).

    Article  Google Scholar 

  23. C. Liu, Y. Yan, and P. Lu, Comp. Fluids 102, 353 (2014).

    Article  Google Scholar 

  24. X. Liu, L. Chen, M. Oliveira, D. B. Tang, and C. Q. Liu, DNS for late stage structure of flow transition on a flat-plate boundary layer, AIAA paper No. 2010-1470, 2010.

    Google Scholar 

  25. Y. Q. Wang, H. Al-Dujaly, Y. H. Yan, N. Zhao, and C. Q. Liu, Sci. China-Phys. Mech. Astron. 59, 624703 (2016).

    Article  Google Scholar 

  26. S. K. Lele, J. Comp. Phys. 103, 16 (1992).

    Article  ADS  Google Scholar 

  27. C. W. Shu, and S. Osher, J. Comp. Phys. 77, 439 (1988).

    Article  ADS  Google Scholar 

  28. L. Jiang, C. Chang, M. Choudhari, and C. Q. Liu, Cross-validation of DNS and PSE results for instability-wave propagation in compressible boundary layers past curvilinear surfaces, AIAA paper No. 2003-3555, 2003.

    Google Scholar 

  29. C. Lee, and R. Li, J. Turbul. 8, N55 (2007).

    Article  Google Scholar 

  30. S. Bake, D. G. W. Meyer, and U. Rist, J. Fluid Mech. 459, 217 (2002).

    Article  ADS  Google Scholar 

  31. J. Z. Wu, H. Ma, and M. Zhou, Vorticity and Vortex Dynamics (Springer Science & Business Media, New York, 2007), p. 502.

    Google Scholar 

  32. P. N. Lombard, and J. J. Riley, Dyn. Atmos. Oceans 23, 345 (1996).

    Article  ADS  Google Scholar 

  33. N. D. Sandham, N. A. Adams, and L. Kleiser, Appl. Sci. Res. 54, 223 (1995).

    Article  ADS  Google Scholar 

  34. V. I. Borodulin, and Y. S. Kachanov, J. Appl. Mech. Tech. Phys. 36, 532 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  35. C. Q. Liu, Y. Q. Wang, Y. Yang, and Z. W. Duan, Sci. China-Phys. Mech. Astron. 59, 684711 (2016).

    Article  Google Scholar 

  36. F. K. Lu, A. J. Pierce, and Y. Shih, Experimental study of near wake of micro vortex generators in supersonic flow, AIAA paper No. 2010-4623, 2010.

    Google Scholar 

  37. S. Qin, and X. Cai, Opt. Lett. 36, 4068 (2011).

    Article  ADS  Google Scholar 

  38. Y. Yan, C. Chen, H. Fu, and C. Liu, J. Turbul. 15, 1 (2014).

    Article  ADS  Google Scholar 

Download references

This work was supported by the Department of Mathematics at University of Texas at Arlington. The authors are grateful to Texas Advanced Computing Center (TACC) for the computation hours provided. This work was accomplished by using Code DNSUTA released by Dr. C. Q. Liu at University of Texas at Arlington in 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoQun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, C. DNS study on bursting and intermittency in late boundary layer transition. Sci. China Phys. Mech. Astron. 60, 114712 (2017). https://doi.org/10.1007/s11433-017-9084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9084-6

Keywords

Navigation