Skip to main content
Log in

A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Bekas, K. Tsirka, D. Baltzis, and A. S. Paipetis, Composites Part B-Eng. 87, 92 (2016).

    Article  Google Scholar 

  2. A. Aliko-Benítez, M. Doblaré, and J. A. Sanz-Herrera, Int. J. Solids Struct. 69-70, 392 (2015).

    Article  Google Scholar 

  3. B. J. Blaiszik, S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White, Annu. Rev. Mater. Res. 40, 179 (2010).

    Article  ADS  Google Scholar 

  4. Q. Wang, G. R. Gossweiler, S. L. Craig, and X. Zhao, J. Mech. Phys. Solids 82, 320 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. L. Black, J. M. Lenhardt, and S. L. Craig, J. Mater. Chem. 21, 1655 (2011).

    Article  Google Scholar 

  6. M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White, and J. S. Moore, Chem. Rev. 109, 5755 (2009).

    Article  Google Scholar 

  7. X. Dong, X. Feng, and K. C. Hwang, J. Appl. Phys. 112, 023502 (2012).

    Article  ADS  Google Scholar 

  8. M. Gigliotti, J. C. Grandidier, and M. C. Lafarie-Frenot, Mech. Mater. 43, 431 (2011).

    Article  Google Scholar 

  9. Y. Suo, and S. Shen, J. Appl. Phys. 114, 164905 (2013).

    Article  ADS  Google Scholar 

  10. K. Loeffel, and L. Anand, Int. J. Plast. 27, 1409 (2011).

    Article  Google Scholar 

  11. N. Birks, and G. H. Meier, Introduction to the High Temperature Oxidation of Metals (Edward Arnold, London, 1983).

    Google Scholar 

  12. C. Wang, S. Ai, and D. Fang, Acta Mech. Solid Sin. 29, 337 (2016).

    Article  Google Scholar 

  13. Y. Pan, and Z. Zhong, J. Mech. Mater. Struct. 10, 79 (2015).

    Article  MathSciNet  Google Scholar 

  14. Y. Pan, and Z. Zhong, Mech. Mater. 85, 7 (2015).

    Article  Google Scholar 

  15. Y. Pan, and Z. Zhong, Composites Sci. Tech. 110, 132 (2015).

    Article  Google Scholar 

  16. Y. H. Pan, and Z. Zhong, Sci. China-Phys. Mech. Astron. 59, 664603 (2016).

    Article  Google Scholar 

  17. H. Haftbaradaran, and J. Qu, J. Mech. Phys. Solids 71, 1 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Haftbaradaran, and J. Qu, Int. J. Solids Struct. 56-57, 126 (2015).

    Article  Google Scholar 

  19. L. Brassart, and Z. Suo, Int. J. Appl. Mech. 04, 1250023 (2012).

    Article  Google Scholar 

  20. N. Swaminathan, J. Qu, and Y. Sun, Philos. Mag. 87, 1705 (2007).

    Article  ADS  Google Scholar 

  21. S. A. Chester, Soft Matter 8, 8223 (2012).

    Article  ADS  Google Scholar 

  22. S. A. Chester, and L. Anand, J. Mech. Phys. Solids 58, 1879 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. A. Chester, and L. Anand, J. Mech. Phys. Solids 59, 1978 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Hong, X. Zhao, J. Zhou, and Z. Suo, J. Mech. Phys. Solids 56, 1779 (2008).

    Article  ADS  Google Scholar 

  25. W. Hong, Z. Liu, and Z. Suo, Int. J. Solids Struct. 46, 3282 (2009).

    Article  Google Scholar 

  26. T. Wallmersperger, B. Kröplin, and R. W. Gülch, Mech. Mater. 36, 411 (2004).

    Article  Google Scholar 

  27. Z. Peradzyński, Arch. Mech. 62, 423 (2010).

    Google Scholar 

  28. O. Coussy, Poromechanics (John Wiley & Sons, Ltd, West Sussex, 2004).

    MATH  Google Scholar 

  29. J. Huyghe, and J. D. Janssen, Transport Porous Media 34, 129 (1999).

    Article  Google Scholar 

  30. G. A. Ateshian, Biomech. Model. Mechanobiol. 6, 423 (2007).

    Article  Google Scholar 

  31. F. Q. Yang, Sci. China-Phys. Mech. Astron. 55, 955 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  32. H. J. Lei, H. L. Wang, B. Liu, and C. A. Wang, Acta Mech. Sin. 32, 611 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Karra, and K. R. Rajagopal, Mech. Time-Depend Mater. 16, 329 (2012), arXiv: 1011.5451.

    Article  ADS  Google Scholar 

  34. K. Van Tittelboom, and N. De Belie, Materials 6, 2182 (2013).

    Article  ADS  Google Scholar 

  35. M. D. Rooij, RILEM State-of-the-Art Reports 11, (2013).

    Google Scholar 

  36. B. Lecampion, Eur. J. Environ. Civil Eng. 17, 176 (2013).

    Article  Google Scholar 

  37. Z. Zhang, and J. Li, Acta Mech. Sin. 32, 406 (2016).

    Article  ADS  Google Scholar 

  38. F. Tian, Y. Pan, and Z. Zhong, Composites Sci. Tech. 142, 156 (2017).

    Article  Google Scholar 

  39. D. Hu, H. Zhou, Q. Hu, J. Shao, X. Feng, and H. Xiao, Acta Mech. Solid Sin. 25, 361 (2012).

    Article  Google Scholar 

  40. H. Song, J. Chen, and J. Jiang, Acta Mech. Solid Sin. 29, 610 (2016).

    Article  Google Scholar 

  41. K. R. Rajagopal, A. R. Srinivasa, and A. S. Wineman, Int. J. Plasticity 23, 1618 (2007).

    Article  Google Scholar 

  42. A. D. Drozdov, Int. J. Appl. Mech. 06, 1450023 (2014).

    Article  Google Scholar 

  43. J. L. Ruan, Y. Pei, and D. Fang, Acta Mech. 223, 2597 (2012).

    Article  Google Scholar 

  44. D. R. Clarke, Curr. Opin. Solid State Mater. Sci. 6, 237 (2002).

    Article  ADS  Google Scholar 

  45. F. Q. Yang, Sci. China-Phys. Mech. Astron. 59, 114611 (2016).

    Article  Google Scholar 

  46. G. Rambert, J. C. Grandidier, and E. C. Aifantis, Eur. J. Mech.- A/Solids 26, 68 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Rambert, G. Jugla, J. C. Grandidier, and L. Cangemi, Compos. Part A-Appl. Sci. Manuf. 37, 571 (2006).

    Article  Google Scholar 

  48. M. Gigliotti, and J. C. Grandidier, Comptes Rendus Mécanique 338, 164 (2010).

    Article  ADS  Google Scholar 

  49. S. Hu, and S. Shen, Acta Mech. 224, 2895 (2013).

    Article  MathSciNet  Google Scholar 

  50. Z. B. Kuang, Sci. Bull. 60, 952 (2015).

    Article  Google Scholar 

  51. K. Kannan, and K. R. Rajagopal, Z. Angew. Math. Phys. 62, 331 (2011).

    Article  MathSciNet  Google Scholar 

  52. K. Loeffel, L. Anand, and Z. M. Gasem, Acta Mater. 61, 399 (2013).

    Article  Google Scholar 

  53. N. Bouklas, and R. Huang, Soft Matter 8, 8194 (2012).

    Article  ADS  Google Scholar 

  54. L. Anand, J. Appl. Mech. 82, 111005 (2015).

    Article  ADS  Google Scholar 

  55. S. K. Upadhyay, Chemical Kinetics and Reaction Dynamics (Springer, New York, 2010).

    Google Scholar 

  56. M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible Thermodynamics (Springer, New York, 2014).

    Book  MATH  Google Scholar 

  57. M. E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, New York, 2013).

    Google Scholar 

  58. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics (Springer, New York, 2014).

    MATH  Google Scholar 

  59. N. S. Ottosen, and M. Ristinmaa, The Mechanics of Constitutive Modeling (Elsevier Science, Oxford, 2005).

    MATH  Google Scholar 

  60. Q. S. Yang, Q. H. Qin, L. H. Ma, X. Z. Lu, and C. Q. Cui, Mech. Mater. 42, 148 (2010).

    Article  Google Scholar 

  61. P. Glansdorff, I. Prigogine, and R. N. Hill, Am. J. Phys. 41, 147 (1973).

    Article  ADS  Google Scholar 

  62. B. D. Coleman, and M. E. Gurtin, J. Chem. Phys. 47, 597 (1967).

    Article  ADS  Google Scholar 

  63. S. R. D. Groot, Thermodynamics of Irreversible Processes (North-Holland Publishing Company, Amsterdam, 1951).

    MATH  Google Scholar 

  64. R. G. Mortimer, and H. Eyring, Proc. Natl. Acad. Sci. USA 77, 1728 (1980).

    Article  ADS  Google Scholar 

  65. M. A. Biot, J. Appl. Phys. 12, 155 (1941).

    Article  ADS  Google Scholar 

  66. I. Mills, T. Cvitaš, K. Homann, N. Kallay, and K. Kuchitsu, J. Electroanal. Chem. 299, 385 (1988).

    Google Scholar 

  67. Z. W. Cui, F. Gao, and J. M. Qu, Acta Mech. Sin. 28, 1049 (2012).

    Article  ADS  Google Scholar 

  68. D. Ben-Avraham, M. A. Burschka, and C. R. Doering, J. Stat. Phys. 60, 695 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhong.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11572227), and Shenzhen Municipal Government through the Fundamental Research Project (Grant No. JCYJ20170307151049286).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhong, Z. A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials. Sci. China Phys. Mech. Astron. 60, 084611 (2017). https://doi.org/10.1007/s11433-017-9044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9044-9

Keywords

Navigation