Skip to main content
Log in

Majorana zero mode in the vortex of an artificial topological superconductor

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Majorana fermion (MF), an exotic particle that is identical to its own antiparticle, was recently found in solid matter as a quasiparticle excitation, the Majorana zero mode (MZM), in the vortex of an artificial topological superconductor (TSC). This artificial TSC, first proposed by Fu and Kane in 2008, is a heterostructure made of a topological insulator Bi2Te3 and an s-wave superconductor NbSe2. This paper will briefly review the experimental progresses based on the Bi2Te3/NbSe2 heterostructure. All evidences are self-consistent and reveal that the MZM exists in the center of vortex. Those experimental results are also supported by theory. This finding is a milestone in the research of Majorana fermions in solid state physics and a starting point of MZM’s application in topological quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Majorana, Nuovo Cim 14, 171 (1937).

    Article  ADS  Google Scholar 

  2. F. T. Avignone III, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80, 481 (2008), arXiv: 0708.1033.

    Article  ADS  Google Scholar 

  3. F. Wilczek, Nat. Phys. 5, 614 (2009).

    Article  Google Scholar 

  4. A. A. Abrikosov, Sov. Phys. JETP-USSR, 5, 1174 (1957).

    Google Scholar 

  5. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008), arXiv: 0707.1889.

    Article  ADS  Google Scholar 

  6. S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73, 220502 (2006).

    Article  ADS  Google Scholar 

  7. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    Article  ADS  Google Scholar 

  8. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    Article  ADS  Google Scholar 

  9. L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008), arXiv: 0707.1692.

    Article  ADS  Google Scholar 

  10. W. L. McMillan, Phys. Rev. 175, 537 (1968).

    Article  ADS  Google Scholar 

  11. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010), arXiv: 1002.4033.

    Article  ADS  Google Scholar 

  12. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys. 8, 887 (2012), arXiv: 1205.7073.

    Article  Google Scholar 

  13. M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Lett. 12, 6414 (2012).

    Article  ADS  Google Scholar 

  14. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012), arXiv: 1204.2792.

    Article  ADS  Google Scholar 

  15. M. X. Wang, C. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Shen, X. Ma, X. Chen, Z. A. Xu, Y. Liu, S. C. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, Science 336, 52. (2012), arXiv: 1112.1772.

    Article  ADS  Google Scholar 

  16. A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Phys. Rev. Lett. 110, 126406 (2013), arXiv: 1212.1101.

    Article  ADS  Google Scholar 

  17. S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346, 602 (2014), arXiv: 1410.0682.

    Article  ADS  Google Scholar 

  18. J. P. Xu, C. Liu, M. X. Wang, J. Ge, Z. L. Liu, X. Yang, Y. Chen, Y. Liu, Z. A. Xu, C. L. Gao, D. Qian, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 112, 217001 (2014), arXiv: 1312.3713.

    Article  ADS  Google Scholar 

  19. A. Haim, E. Berg, F. von Oppen, and Y. Oreg, Phys. Rev. Lett. 114, 166406 (2015), arXiv: 1411.0673.

    Article  ADS  Google Scholar 

  20. J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015), arXiv: 1312.7110.

    Article  ADS  Google Scholar 

  21. H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett. 116, 257003 (2016), arXiv: 1603.02549.

    Article  ADS  Google Scholar 

  22. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  23. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009), arXiv: 0908.3513.

    Article  Google Scholar 

  24. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).

    Article  ADS  Google Scholar 

  25. C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. Wang, K. He, X. Chen, J. F. Jia, Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. Ma, Appl. Phys. Lett. 97, 143118 (2010), arXiv: 1007.0809.

    Article  ADS  Google Scholar 

  26. S. Beaupré, P. L. T. Boudreault, and M. Leclerc, Adv. Mater. 22, E6 (2010).

    Article  Google Scholar 

  27. L. He, F. Xiu, Y. Wang, A. V. Fedorov, G. Huang, X. Kou, M. Lang, W. P. Beyermann, J. Zou, and K. L. Wang, J. Appl. Phys. 109, 103702 (2011).

    Article  ADS  Google Scholar 

  28. X. Liu, D. J. Smith, H. Cao, Y. P. Chen, J. Fan, Y. H. Zhang, R. E. Pimpinella, M. Dobrowolska, and J. K. Furdyna, J. Vacuum Sci. Tech. B 30, 02B103 (2012).

    Article  Google Scholar 

  29. M. X. Wang, P. Li, J. P. Xu, Z. L. Liu, J. F. Ge, G. Y. Wang, X. Yang, Z. A. Xu, S. H. Ji, C. L. Gao, D. Qian, W. Luo, C. Liu, and J. F. Jia, New J. Phys. 16, 123043 (2014).

    Article  ADS  Google Scholar 

  30. S. Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S. H. Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth, and M. Z. Hasan, Nat. Phys. 10, 943 (2014), arXiv: 1410.5405.

    Article  Google Scholar 

  31. C. Caroli, P. G. De Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).

    Article  ADS  Google Scholar 

  32. R. G. Mints, and A. L. Rachmanov, Solid State Commun. 16, 747 (1975).

    Article  ADS  Google Scholar 

  33. Y. E. Kraus, A. Auerbach, H. A. Fertig, and S. H. Simon, Phys. Rev. Lett. 101, 267002 (2008), arXiv: 0811.2557.

    Article  ADS  Google Scholar 

  34. R. S. Akzyanov, A. V. Rozhkov, A. L. Rakhmanov, and F. Nori, Phys. Rev. B 89, 085409 (2014), arXiv: 1307.0923.

    Article  ADS  Google Scholar 

  35. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. B 82, 094522 (2010), arXiv: 0912.4508.

    Article  ADS  Google Scholar 

  36. Z. Z. Li, F. C. Zhang, and Q. H. Wang, Sci. Rep. 4, 6363 (2014).

    Article  ADS  Google Scholar 

  37. T. Kawakami, and X. Hu, Phys. Rev. Lett. 115, 177001 (2015), arXiv: 1506.03194.

    Article  ADS  Google Scholar 

  38. J. J. He, T. K. Ng, P. A. Lee, and K. T. Law, Phys. Rev. Lett. 112, 037001 (2014), arXiv: 1309.1528.

    Article  ADS  Google Scholar 

  39. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  40. M. Bode, Rep. Prog. Phys. 66, 523 (2003).

    Article  ADS  Google Scholar 

  41. R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009).

    Article  ADS  Google Scholar 

  42. D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

    Article  ADS  Google Scholar 

  43. L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht, and R. Egger, Phys. Rev. Lett. 116, 050501 (2016), arXiv: 1509.05345.

    Article  ADS  Google Scholar 

  44. S. Vijay, T. H. Hsieh, and L. Fu, Phys. Rev. X 5, 041038 (2015), arXiv: 1504.01724.

    Google Scholar 

  45. S. Vijay, and L. Fu, Phys. Scr. T168, 014002 (2016), arXiv: 1509.08134.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Feng Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HH., Jia, JF. Majorana zero mode in the vortex of an artificial topological superconductor. Sci. China Phys. Mech. Astron. 60, 057401 (2017). https://doi.org/10.1007/s11433-017-9011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9011-7

Keywords

PACS number(s)

Navigation