Skip to main content
Log in

Quantum measurement in coherence-vector representation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level (N ⩾ 2) quantum system constitute a convex set M (N) embedded in an (N 2 − 1)-dimensional Euclidean space \(\mathbb{R}^{N^2 - 1}\), and we find that an orthogonal measurement is an (N − 1)-dimensional projector operator on \(\mathbb{R}^{N^2 - 1}\). The states unchanged by an orthogonal measurement form an (N − 1)-dimensional simplex, and in the case when N is prime or power of prime, the space of the density operator is a direct sum of (N + 1) such simplices. The mathematical description of quantum measurement is plain in this representation, and this may have further applications in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Press, Cambridge, 2000).

    MATH  Google Scholar 

  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74(1), 145 (2002).

    Article  ADS  Google Scholar 

  3. C. H. Bennett, and G. Brassard, Theor. Comput. Sci. 560, 7 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. L. Long, and X. S. Liu, Phys. Rev. A 65(3), 032302 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  5. F.-G. Deng, and G. L. Long, Phys. Rev. A 69(5), 052319 (2004).

    Article  ADS  Google Scholar 

  6. C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, and G. L. Long, Phys. Rev. A 71(4), 044305 (2005).

    Article  ADS  Google Scholar 

  7. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59(3), 1829 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. A. Bergou, J. Phys.-Conf. Ser. 84, 012001 (2007).

    Article  ADS  Google Scholar 

  9. X. H. Wu, S. L. Yu, and T. Zhou, Phys. Rev. A 79(5), 052302 (2009).

    Article  ADS  Google Scholar 

  10. L. Chen, and H. Lu, Sci. China-Phys. Mech. Astron. 55(1), 55 (2012).

    Article  ADS  Google Scholar 

  11. T. Zhou, Quantum Inf. Proc. 11, 1669 (2012).

    Article  ADS  MATH  Google Scholar 

  12. T. Zhou, J. X. Cui, X. Wu, and G. L. Long, Quantum Inf. Comput. 12(11&12), 1017 (2012).

    MathSciNet  MATH  Google Scholar 

  13. T. Zhou, Phys. Rev. A 89(1), 014301 (2014).

    Article  ADS  Google Scholar 

  14. P. W. Shor, in Algorithms for quantum computation: Discrete logarithms and factoring: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SANTA FE, NM, 20-22 November 1994, edited by S. Goldwasser (IEEE, Santa FE, 1994), pp. 124–134.

  15. L. K. Grover, Phys. Rev. Lett. 79(2), 325 (1997).

    Article  ADS  Google Scholar 

  16. G. L. Long, Phys. Rev. A 64(2), 022307 (2001).

    Article  ADS  Google Scholar 

  17. L. Hao, and G. L. Long, Sci. China-Phys. Mech. Astron. 54(5), 936 (2011).

    Article  ADS  Google Scholar 

  18. F. Li, W. Bao, and X. Fu, Chin. Sci. Bull. 59(21), 2552 (2014).

    Article  Google Scholar 

  19. Y. Liu, and X. P. Ouyang, Chin. Sci. Bull. 58(19), 2329 (2013).

    Article  Google Scholar 

  20. H. Wang, Z. Ma, and C. G. Ma, Chin. Sci. Bull. 58(28-29), 3514 (2013).

    Article  Google Scholar 

  21. L. Hao, D. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 53(9), 1765 (2010).

    Article  ADS  Google Scholar 

  22. F. M. Toyama, W. van Dijk, and Y. Nogami, Quantum Inf. Proc. 12(5), 1897 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. G. Castagnoli, arXiv:1308.5077.

  24. M. G. A. Paris, and J. Reháek, Quantum State Estimation (Lecture Notes in Physics) (Springer, Berlin, 2004), Vol. 649.

  25. H. Ollivier, and W. H. Zurek, Phys. Rev. Lett. 88(1), 017901 (2001).

    Article  ADS  Google Scholar 

  26. L. Henderson, and V. Vedral, J. Phys. A 34, 6899 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955).

    MATH  Google Scholar 

  28. E. B. Davies, and J. T. Lewis, Comm. Math. Phys. 17(3), 239 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976).

    MATH  Google Scholar 

  30. K. Kraus, Ann. Phys. 64(2), 311 (1971).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer-Verlag, Berlin, 1983).

    Book  MATH  Google Scholar 

  32. M. Ozawa, J. Math. Phys. 25, 79 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Ozawa, Conditional expectation and repeated measurements of continuous quantum observables, in Probability Theory and Mathematical Statistics (Lecture Notes in Math.), edited by K. Itô, J. V. Prohorov (Springer, Berlin, 1983), pp. 518–525.

    Chapter  Google Scholar 

  34. J. Maddox, Nature 331, 559 (1998).

    ADS  Google Scholar 

  35. M. Ozawa, Ann. Phys. (N.Y.) 259(1), 121 (1997).

    Article  ADS  MATH  Google Scholar 

  36. J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y. Hasegawa, Nat. Phys. 8, 185 (2012).

    Article  Google Scholar 

  37. F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu, Phys. Rev. Lett. 112(2), 020402 (2014).

    Article  ADS  Google Scholar 

  38. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light-Sci. Appl. 1(8), e24 (2012).

    Article  Google Scholar 

  39. T. Zhou, J. Cui, and G. L. Long, Phys. Rev. A 84(6), 062105 (2011).

    Article  ADS  Google Scholar 

  40. J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, Light-Sci. Appl. 4(5), e286 (2015).

    Article  Google Scholar 

  41. W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, Sci. China-Phys. Mech. Astron. 58(5), 050309 (2015).

    Article  Google Scholar 

  42. P. Zhang, Q. Ai, Y. Li, D. Z. Xu, and C. P. Sun, Sci. China-Phys. Mech. Astron. 57(2), 194 (2014).

    Article  Google Scholar 

  43. Y. Liu, and J. X. Cui, Chin. Sci. Bull. 59(19), 2298 (2014).

    Article  Google Scholar 

  44. W. F. Liu, C. B. Zhang, and Z. H. Chen, Chin. Sci. Bull. 57(18), 2233 (2012).

    Article  Google Scholar 

  45. S. Zhang, G. Zhang, Y. Wang, J. Zeng, Y. Qiu, and M. Liu, Chin. Sci. Bull. 58(24), 2917 (2013).

    Article  Google Scholar 

  46. Y. M. Fang, Z. Z. Qin, H. L. Wang, L. M. Cao, J. Xin, J. L. Feng, W. P. Zhang, and J. T. Jin, Sci. China-Phys. Mech. Astron. 58(6), 064201 (2015).

    Article  Google Scholar 

  47. I. Bengtsson, and K. Žyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  48. L. J. Boya, and K. Dixit, Phys. Rev. A 78(4), 042108 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  49. F. Bloch, Phys. Rev. 70(7), 460 (1946).

    Article  ADS  Google Scholar 

  50. J. Schlienz, and G. Mahler, Phys. Rev. A 52(6), 4396 (1995).

    Article  ADS  Google Scholar 

  51. M. S. Byrd, and N. Khaneja, Phys. Rev. A 68(6), 062322 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  52. F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett. 47(12), 838 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Pöttinger, and K. Lendi, Phys. Rev. A 31(3), 1299 (1985).

    Article  ADS  Google Scholar 

  54. L. Jakóbczyk, and M. Siennicki, Phys. Lett. A 286(6), 383 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. G. Kimura, Phys. Lett. A 314(5), 339 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. R. Alichi, and K. Lendi, Quantum Dynamics Semigroups and Apllication (Lecture Notes in Physics) (Springer, Berlin, 1987), Vol. 286.

  57. G. Mahler, and V. A. Weberruss, Quantum Networks: Dynamics of Open Nanostructures, 2nd ed. (Spriger-Verlag, Berlin, 1998).

    Book  Google Scholar 

  58. G. Kimura, and A. Kossakowski, Open Sys. Inf. Dyn. 12(3), 207 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T. Quantum measurement in coherence-vector representation. Sci. China Phys. Mech. Astron. 59, 640301 (2016). https://doi.org/10.1007/s11433-016-5789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-5789-5

Keywords

Navigation