Skip to main content
Log in

Cluster of solar active regions and onset of coronal mass ejections

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Abstract round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions (ARs) are ultimately connected with magnetic field. Often two or more ARs are clustered, creating a favorable magnetic environment for the onset of coronal mass ejections (CMEs). In this work, we describe a new type of magnetic complex: cluster of solar ARs. An AR cluster is referred to as the close connection of two or more ARs which are located in nearly the same latitude and a narrow span of longitude. We illustrate three examples of AR clusters, each of which has two ARs connected and formed a common dome of magnetic flux system. They are clusters of NOAA (i.e., National Oceanic and Atmospheric Administration) ARs 11226 & 11227, 11429 & 11430, and 11525 & 11524. In these AR clusters, CME initiations were often tied to the instability of the magnetic structures connecting two partner ARs, in the form of inter-connecting loops and/or channeling filaments between the two ARs. We show the evidence that, at least, some of the flare/CMEs in an AR cluster are not a phenomenon of a single AR, but the result of magnetic interaction in the whole AR cluster. The observations shed new light on understanding the mechanism(s) of solar activity. Instead of the simple bipolar topology as suggested by the so-called standard flare model, a multi-bipolar magnetic topology is more common to host the violent solar activity in solar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J X, Zhou G P, Wen Y Y, et al. Transequatorial filament eruption and its link to a coronal mass ejection. Chin J Astron Astrophys, 2006, 6: 247–259

    Article  ADS  Google Scholar 

  2. Wang J X, Zhang Y Z, Zhou G P, et al. Solar trans-equatorial activity. Solar Phys, 2007, 244: 75–94

    Article  ADS  Google Scholar 

  3. Zhang Y Z, Wang J X, Attrill G D R, et al. Coronal magnetic connectivity and EUV dimmings. Solar Phys, 2007, 241: 329–349

    Article  ADS  Google Scholar 

  4. Zhou G P, Wang J X, Wang Y M, et al. Quasi-simultaneous flux emergence in the events of October November 2003. Solar Phys, 2007, 244: 13–24

    Article  ADS  Google Scholar 

  5. Schrijver C J, Title A M. Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J Geophys Res, 2011, 116: A04108

  6. Schrijver C J, Title A M, Yeates A R, et al. Pathways of large-scale magnetic couplings between solar coronal events. Astrophys J, 2013, 773: 93

    Article  ADS  Google Scholar 

  7. Pesnell W D, Thompson B J, Chamberlin P C. The solar dynamics observatory (SDO). Solar Phys, 2012, 275: 3–15

    Article  ADS  Google Scholar 

  8. Woods T N, Hock R, Eparvier F, et al. New solar extreme-ultraviolet irradiance observations during flares. Astrophys J, 2011, 739: 59

    Article  ADS  Google Scholar 

  9. Woods T N. Extreme ultraviolet late-phase flares: Before and during the Solar Dynamics Observatory Mission. Solar Phys, 2014, 289: 3391–3401

    Article  ADS  Google Scholar 

  10. Lemen J R, Title A M, Akin D J, et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys, 2012, 275: 17–40

    Article  ADS  Google Scholar 

  11. Wang J X, Jiang J. Magnetohydrodynamic process in solar activity. Theor Appl Mech Lett, 2014, 4: 052001

    Article  Google Scholar 

  12. Zhang Y Z, Hu Y Q, Wang J X. Double catastrophe of coronal flux rope in quadrupolar magnetic field. Astrophys J, 2005, 626: 1096–1101

    Article  ADS  Google Scholar 

  13. Zhang Y Z, Wang J X, Hu Y Q. Two-current-sheet reconnection model of interdependent flare and coronal mass ejection. Astrophys J, 2006, 641: 572–576

    Article  ADS  Google Scholar 

  14. Zhang Y Z, Wang J X. A catastrophic flux rope in a quadrupole magnetic field for coronal mass ejections. Astrophys J, 2007, 663: 592–597

    Article  ADS  Google Scholar 

  15. Longcope D W, Forbes T G. Breakout and tether-cutting eruption models are both catastrophic (sometimes). Solar Phys, 2014, 289: 2091–2122

    Article  ADS  Google Scholar 

  16. Kliem B, Lin J, Forbes T G, et al. Catastrophe versus instability for the eruption of a toroidal solar magnetic flux rope. Astrophys J, 2014, 789: 46

    Article  ADS  Google Scholar 

  17. Yan Y H, Sakurai T. New boundary integral equation representation for finite energy force-free magnetic fields in open space above the Sun. Solar Phys, 2000, 195: 89–109

    Article  ADS  Google Scholar 

  18. He H, Wang H N, Yan Y H. Nonlinear force-free field extrapolation of the coronal magnetic field using the data obtained by the Hinode satellite. J Geophys Res, 2011, 116: A01101

  19. Zhang J, Wang J X, Deng Y Y, et al. Magnetic flux cancellation associated with the major solar event on 2000 July 14. Astrophys J, 2001, 548: L99–L102

    Article  ADS  Google Scholar 

  20. Wang J X, Zhou G P, Zhang J. Helicity patterns of coronal mass ejection-associated active regions. Astrophys J, 2004, 615: 1021–1028

    Article  ADS  Google Scholar 

  21. Wang J X, Zhao M, Zhou G. Magnetic changes in the course of the X7.1 solar flare on 2005 January 20. Astrophys J, 2009, 690: 862–874

    Article  ADS  Google Scholar 

  22. Wen Y Y, Wang J X, Maia D J F, et al. Spatial and temporal scales of coronal magnetic restructuring in the development of coronal mass ejections. Solar Phys, 2006, 239: 257–276

    Article  ADS  Google Scholar 

  23. Zhang Y, Zhang M, Zhang H Q. A statistical study on the relationship between surface field variation and CME initiation. Adv Space Res, 2007, 39: 1762–1766

    Article  ADS  Google Scholar 

  24. Chen A Q, Wang J X, Li J W, et al. Statistical properties of superactive regions during solar cycles 19–23. Astron Astrophys, 2011, 534: A47

    Article  ADS  Google Scholar 

  25. Chen A Q, Wang J X. Quantifying solar superactive regions with vector magnetic field observations. Astron Astrophys, 2012, 543: A49

    Article  ADS  Google Scholar 

  26. Nitta N V, Liu Y, DeRosa M L, et al. What are special about groundlevel events? flares, CMEs, active regions and magnetic field connection. Space Sci Rev, 2012, 171: 61–83

    Article  ADS  Google Scholar 

  27. Vemareddy P, Ambastha A, Maurya R A, et al. On the injection of helicity by the shearing motion of fluxes in relation to flares and coronal mass ejections. Astrophys J, 2012, 761: 86–103

    Article  ADS  Google Scholar 

  28. Grechnev V V, Uralov A M, Slemzin V A, et al. A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. unusual history of an eruptive filament. Solar Phys, 2014, 289: 289–318

    Article  ADS  Google Scholar 

  29. Wang J X, Ji H S. Recent advances in solar storm studies in China. Sci China-Earth Sci, 2013, 56: 1091–1117

    Article  Google Scholar 

  30. Low B C. Field topologies in ideal and near-ideal magnetohydrodynamics and vortex dynamics. Sci China-Phys Mech Astron, 2015, 58: 015201

    Article  Google Scholar 

  31. Bumba V, Howard R. Large-scale distribution of solar magnetic fields. Astrophys J, 1965, 141: 1502–1512

    Article  ADS  Google Scholar 

  32. Gaizauskas V, Harvey K L, Harvey J W, et al. Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys J, 1983, 265: 1056–1065

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingXiu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Y., He, H. et al. Cluster of solar active regions and onset of coronal mass ejections. Sci. China Phys. Mech. Astron. 58, 599601 (2015). https://doi.org/10.1007/s11433-015-5682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5682-7

Keywords

Navigation