Skip to main content
Log in

Deformation dependence of symmetry energy coefficients of nuclei

  • Article
  • Nuclear Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we study the deformation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coefficients of nuclei with mass number A = 40, 100, 150, 208 are extracted from two-parameter parabola fitting to the calculated energy per particle. We find that the symmetry energy coefficients decrease with the increase of nuclear quadrupole deformations, which is mainly due to the isospin dependence of the difference between the proton and neutron surface diffuseness. Large deformations of nuclei can cause the change of the symmetry energy coefficient by about 0.5 MeV and the influence of nuclear deformations on the symmetry energy coefficients is more evident for light and intermediate nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gandolfi S, Carlson J, Reddy S, et al. The equation of state of neutron matter, symmetry energy, and neutron star structure. Eur Phys J A, 2014, 50: 10

    Article  ADS  Google Scholar 

  2. Zhang Y X, Danielewicz P, Famiano M, et al. The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios. Phys Lett B, 2008, 664: 145

    Article  ADS  Google Scholar 

  3. Tsang M B, Zhang Y X, Danielewicz P, et al. Constraints on the density dependence of the symmetry energy. Phys Rev Lett, 2009, 102: 122701

    Article  ADS  Google Scholar 

  4. Li B A, Chen L W, Ko C M. Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys Rep, 2008, 464: 113–281

    Article  ADS  Google Scholar 

  5. Li B A, Das C B, Das Gupta S, et al. Momentum dependence of the symmetry potential and nuclear reactions induced by neutron rich nuclei at RIA. Phys Rev C, 2004, 69: 011603

    Article  ADS  Google Scholar 

  6. Chen L W, Ko C M, Li B A. Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys Rev Lett, 2005, 94: 032701

    Article  ADS  Google Scholar 

  7. Shetty D V, Yennello S J, Souliotis G A. Density dependence of the symmetry energy and the nuclear equation of state: A dynamical and statistical model perspective. Phys Rev C, 2007, 76: 024606

    Article  ADS  Google Scholar 

  8. Botvina A S, Lozhkin O V, Trautmann W. Isoscaling in light-ion induced reactions and its statistical interpretation. Phys Rev C, 2002, 65: 044610

    Article  ADS  Google Scholar 

  9. Centelles M, Roca-Maza X, Vinas X, et al. Nuclear symmetry energy probed by neutron skin thickness of nuclei. Phys Rev Lett, 2009, 102: 122502

    Article  ADS  Google Scholar 

  10. Steiner AW, Gandolfi S. Connecting neutron star observations to three-body forces in neutron matter and to the nuclear symmetry energy. Phys Rev Lett, 2012, 108: 081102

    Article  ADS  Google Scholar 

  11. Steiner A W, Prakash M, Lattimer J M, et al. Isospin asymmetry in nuclei and neutron stars. Phys Rep, 2005, 411: 325–375

    Article  ADS  Google Scholar 

  12. Dong J, Zuo W, Scheid W. Correlation between α-decay energies of superheavy nuclei involving the effects of symmetry energy. Phys Rev Lett, 2011, 107: 012501

    Article  ADS  Google Scholar 

  13. Wang N, Ou L, Liu M. Nuclear symmetry energy from the Fermienergy difference in nuclei. Phys Rev C, 2013, 87: 034327

    Article  ADS  Google Scholar 

  14. Wang N, Li T. Shell and isospin effects in nuclear charge radii. Phys Rev C, 2013, 88: 011301(R)

    Article  ADS  Google Scholar 

  15. Liu M, Wang N, Li Z X, et al. Nuclear symmetry energy at subnormal densities from measured nuclear masses. Phys Rev C, 2010, 82: 064306

    Article  ADS  Google Scholar 

  16. Audi G, Wapstra A H, Thibault C. The AME 2003 atomic mass evaluation (II). Tables, graphs and references. Nucl Phys A, 2003, 729: 337–676

    Article  ADS  Google Scholar 

  17. Vautherin D, Brink D M. Hartree-fock calculations with skyrme’s interaction. I. Spherical nuclei. Phys Rev C, 1972, 5: 626

    Article  ADS  Google Scholar 

  18. Bartel J, Bencheikh K. Nuclear mean fields through self-consistent semiclassical calculations. Eur Phys J, 2002, 14: 179–190

    Article  ADS  Google Scholar 

  19. Brack M, Guet C, Hakanson H B. Selfconsistent semiclassical description of average nuclear properties ł a link between microscopic and macroscopic models. Phys Rep, 1985, 123: 275–364

    Article  ADS  Google Scholar 

  20. Liu M, Wang N, Li Z, et al. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers. Nucl Phys A, 2006, 768: 80–98

    Article  ADS  Google Scholar 

  21. Bartel J, Quentin P, Brack M, et al. Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force. Nucl Phys A, 1982, 386: 79–100

    Article  ADS  Google Scholar 

  22. Chabanat E, Bonche P, Haensel P, et al. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl Phys A, 1998, 635: 231–256

    Google Scholar 

  23. Goriely S, Chamel N, Pearson J M. Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys Rev C, 2013, 88: 061302(R)

    Article  ADS  Google Scholar 

  24. Cwoik S, Dudek J, Nazarewicz W, et al. Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed woods-saxon potential with applications to the two-centre-type nuclear problems. Comp Phys Comm, 1987, 46: 379–399

    Article  ADS  Google Scholar 

  25. Wang N, Liang Z, Liu M, et al. Mirror nuclei constraint in nuclear mass formula. Phys Rev C, 2010, 82: 044304

    Article  ADS  Google Scholar 

  26. Angeli I, Marinova K P, Data At, et al. Table of experimental nuclear ground state charge radii: An update. Data Tables, 2013, 99: 69–95

    Article  Google Scholar 

  27. Danielewicz P, Lee J. Symmetry energy I: Semi-infinite matter. Nucl Phys A, 2009, 818: 36–96

    Article  ADS  Google Scholar 

  28. Dutra M, Lourenço O, Sá Martins J S, et al. Skyrme interaction and nuclear matter constraints. Phys Rev C, 2012, 85: 035201

    Article  ADS  Google Scholar 

  29. Wang N, Liu M, Wu X Z. Modification of nuclear mass formula by considering isospin effects. Phys Rev C, 2010, 81: 044322

    Article  ADS  Google Scholar 

  30. Wang N, Liu M, Wu X Z, et al. Surface diffuseness correction in global mass formula. Phys Lett B, 2014, 734: 215

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Q., Liu, M., Cheng, L. et al. Deformation dependence of symmetry energy coefficients of nuclei. Sci. China Phys. Mech. Astron. 58, 82001 (2015). https://doi.org/10.1007/s11433-015-5667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5667-6

Keywords

Navigation