Skip to main content
Log in

Photonic band structure of one-dimensional metal/dielectric structures calculated by the plane-wave expansion method

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The plane-wave expansion (PWE) method is employed to calculate the photonic band structures of metal/dielectric (M/D) periodic systems. We consider a one-dimensional (1D)M/D superlattice with ametal layer characterized by a frequency-dependent dielectric function. To calculate the photonic band of such a system, we propose a new method and thus avoid solving the nonlinear eigenvalue equations. We obtained the frequency dispersions and the energy distributions of eigen-modes of 1D superlattices. This general method is applicable to calculate the photonic band of a broad class of physical systems, e.g. 2D and 3D M/D photonic crystals. For comparison, we present a simple introduction of the finite-difference (FD) method to calculate the same system, and the agreement turns out to be good. But the FD method cannot be applied to the TM modes of the M/D superlattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakoda K. Optical Properties of Photonic Crystals. 2nd ed. London: Springer Press, 2005. 13–39

    Google Scholar 

  2. Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: Putting a new twist on light. Nature, 1997, 386: 143–149

    Article  ADS  Google Scholar 

  3. Kosaka H, Kawashima T, Tomita A, et al. Superprism phenomena in photonic crystals. Phy Rev B, 1998, 58: R10096–R10099

    Article  ADS  Google Scholar 

  4. Baba T. Slow light in photonic crystals. Nat Photonics, 2008, 2: 465–473

    Article  ADS  Google Scholar 

  5. Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: Next to zero losses at sharp bends. Opt Lett, 2004, 30: 1186–1188

    Article  ADS  Google Scholar 

  6. Kim K Y. Plasmonics: Principles and Applications. Rijeka: InTech Press, 2012. 254–309

    Book  Google Scholar 

  7. Maier S A, Atwater H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys, 2005, 98: 011101

    Article  ADS  Google Scholar 

  8. Ohtsu M, Kobayashi K, Kawazoe T. Principles of Nanophotonics. Boca Raton: CRC Press, 2008. 1–15

    Google Scholar 

  9. Diest K A. Numerical Methods for Metamaterial Design. London: Springer Press, 2013. 9–14

    Book  Google Scholar 

  10. John S. Strong localization of photons in certain disordered dielectric lattices. Phys Rev Lett, 1987, 58: 2486–2489

    Article  ADS  Google Scholar 

  11. Tsukerman I. Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves. London: Springer Press, 2008. 12–219

    Book  Google Scholar 

  12. Allen T, Susan H C. Computational Electrodynamics: The Finitedifference Time-domain Method. Boston/London: Artech House, 2005

    Google Scholar 

  13. Deinega A, Belousov S, Valuev I. Transfer-matrix approach for finitedifference time-domain simulation of periodic structures. Phys Rev E, 2013, 88: 053305

    Article  ADS  Google Scholar 

  14. Deinega A, Belousov S, Valuev I. Hybrid transfer-matrix FDTD method for layered periodic structures. Opt Lett, 2009, 34: 860–862

    Article  ADS  Google Scholar 

  15. Dong C, Wang T, Yan W. Theoretical study of transmission spectrum in cavity-waveguide side-coupled systems. Mod Phys Lett B, 2013, 27: 1350157

    Article  ADS  Google Scholar 

  16. Ochiai T, Sakoda K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys Rev B, 2001, 63: 125107

    Article  ADS  Google Scholar 

  17. Cheng C, Xu C. Photonic bands in two-dimensional metallodielectric photonic crystals composed of metal coated cylinders. J Appl Phys, 2009, 106: 033101

    Article  ADS  Google Scholar 

  18. Kuzmiak V, Maradudin A A. Photonic band structures of one- and twodimensional periodic systems with metallic components in the presence of dissipation. Phys Rev B, 1997, 55: 7427–7444

    Article  ADS  Google Scholar 

  19. Kuzmiak V, Maradudin A A, Pincemin F. Photonic band structures of two-dimensional systems containing metallic components. Phys Rev B, 1994, 50: 16835–16844

    Article  ADS  Google Scholar 

  20. Keskinen M J, Loschialpo P, Forster D, et al. Photonic band gap structure and transmissivity of frequency-dependent metallic/dielectric systems. J Appl Phys, 2000, 88: 5785–5790

    Article  ADS  Google Scholar 

  21. Raman A, Fan S. Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem. Phys Rev Lett, 2010, 104: 087401

    Article  ADS  Google Scholar 

  22. Sakoda K, Kawai N, Ito T, et al. Photonic bands of metallic systems. I. Principle of calculation and accuracy. Phys Rev B, 2001, 64: 045116

    Google Scholar 

  23. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. London: Springer Press, 1988. 6–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianBai Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Y., Xia, J. Photonic band structure of one-dimensional metal/dielectric structures calculated by the plane-wave expansion method. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-015-5655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5655-x

Keywords

Navigation