Skip to main content
Log in

Comparison between the time-integrated spectrum and the peak time spectrum of gamma-ray bursts and possible implications

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The mono-frequency peak luminosity and the corresponding photon energy of the time-integrated (L sp , E sp ) and peak time (L tp , E tp ) νf ν spectra were derived for a sample of 38 redshift-known Fermi GRBs by fitting the spectra with the Band function. It was found that E tp is generally consistent with E sp , and L tp is averagely three times larger than L sp . The slope of the L tp E tp relation was consistent with that of the L sp E sp relation. The photon indices in the peak time spectrum, particularly, the index of the low energy end was, were statistically larger than that in the time-integrated spectrum. These results indicate that L sp and E sp are dominated by L tp and E tp , respectively. The difference of the spectral indices between the time-integrated and peak time spectra may be because of the overlap effect of a series of time-resolved spectra within a GRB. Our simulations, which were based on the observed spectral evolution and correlation between the energy flux and the peak energy within individual GRBs support our speculations. The L tp E tp relation may be less contaminated by the overlap effect, and it would may be an intrinsic feature of radiation physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piran T. Gamma-ray bursts and the fireball model. Phys Rep, 1999, 314: 575–667

    Article  ADS  Google Scholar 

  2. Zhang B, Mészáros P. Gamma-ray bursts: Progress, problems and prospects. Int J Modern Phys A, 2004, 19: 2385–2472

    Article  ADS  Google Scholar 

  3. Mészáros P. Gamma-ray bursts. Rep Prog Phys, 2006, 69: 2321–2259

    Article  Google Scholar 

  4. Zhang B. Gamma-ray bursts in the swift era. Chin J Astron Astrophys, 2007, 7: 1–50

    Article  ADS  Google Scholar 

  5. Gehrels N, Ramirez-Ruiz E, Fox D B. Gamma-ray bursts in the swift era. Annu Rev Astron Astrophys, 2009, 47: 567–617

    Article  ADS  Google Scholar 

  6. Liang E. Gamma-ray bursts in the swift-fermi era: Confronting data with theory. Sci China-Phys Mech Astron, 2010, 53: 14–23

    Article  ADS  Google Scholar 

  7. Band D, Matteson J, Ford L, et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys J, 1993, 413: 281–292

    Article  Google Scholar 

  8. Amati L, Frontera F, Tavani M, et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron Astrophys, 2002, 390: 81–89

    Article  ADS  Google Scholar 

  9. Liang E W, Dai Z G, Wu X F. The luminosity-E p relation within gamma-ray bursts and the implications for fireball models. Astrophys J, 2004, 606: L29–L32

    Article  ADS  Google Scholar 

  10. Yonetoku D, Murakami T, Nakamura T, et al. Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys J, 2004, 609: 935–951

    Article  ADS  Google Scholar 

  11. Ghirlanda G, Ghisellini G, Lazzati D. The collimation-corrected gamma-ray burst energies correlate with the peak energy of their νF ν spectrum. Astrophys J, 2004, 616: 331–338

    Article  ADS  Google Scholar 

  12. Liang E, Zhang B. Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophys J, 2005, 633: 611–623

    Article  ADS  Google Scholar 

  13. Dong W, Liang E, Lu R. The flux-E p relation within GRB060218 in comparison with typical GRB pulses. Sci China-Phys Mech Astron, 2010, 53: 78–81

    Article  ADS  Google Scholar 

  14. Zhang B, Mészáros P. An analysis of gamma-ray burst spectral break models. Astrophys J, 2002, 581: 1236–1247

    Article  ADS  Google Scholar 

  15. Eichler D, Levinson A. An interpretation of the hνpeakE iso correlation for gamma-ray bursts. Astrophys J, 2004, 614: L13–L16

    Article  ADS  Google Scholar 

  16. Nava L, Ghisellini G, Ghirlanda G, et al. On the interpretation of spectral-energy correlations in long gamma-ray bursts. Astron Astrophys, 2006, 450: 471–481

    Article  ADS  Google Scholar 

  17. Thompson C, Mészáros P, Rees M J. Thermalization in relativistic out-flows and the correlation between spectral hardness and apparent luminosity in gamma-ray bursts. Astrophys J, 2007, 666: 1012–1023

    Article  ADS  Google Scholar 

  18. Abdo A A, Ackermann M, Arimoto M, et al. Fermi observations of high-energy gamma-ray emission from GRB 080916C. Science, 2009, 323: 1688–1693

    Article  ADS  Google Scholar 

  19. Zhang B B, Zhang B, Liang E W, et al. A comprehensive analysis of Fermi gamma-ray burst data. I. Spectral components and the possible physical origins of LAT/GBM GRBs. Astrophys J, 2011, 730: 141

    Article  ADS  Google Scholar 

  20. Lu R J, Wei J J, Liang E W, et al. A comprehensive analysis of Fermi gamma-ray burst data. II. E p evolution patterns and implications for the observed spectrum-luminosity relations. Astrophys J, 2012, 756: 112

    Article  ADS  Google Scholar 

  21. Abdo A A, Ackermann M, Ajello M, et al. Fermi observations of GRB 090902B: A distinct spectral component in the prompt and delayed emission. Astrophys J, 2009, 706: L138–L144

    Article  ADS  Google Scholar 

  22. Ryde F, Axelsson M, Zhang B B, et al. Identification and properties of the photospheric emission in GRB090902B. Astrophys J, 2010, 709: L172–L177

    Article  ADS  Google Scholar 

  23. Ackermann M, Asano K, Atwood W B, et al. Fermi observations of GRB 090510: A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies. Astrophys J, 2010, 716: 1178–1190

    Article  ADS  Google Scholar 

  24. Liang E W, Dai Z G. The peak energy distribution of the νF ν spectra and the implications for the jet structure models of gamma-ray bursts. Astrophys J, 2004, 608: L9–L12

    Article  ADS  Google Scholar 

  25. Lamb D Q, Ricker G R, Atteia J L, et al. Scientific highlights of the HETE-2 mission. New Astron Rev, 2004, 48: 423–430

    Article  ADS  Google Scholar 

  26. Lv H, Liang E, Tong X. Spectral properties of Fermi/GBM gammaray bursts and the GeV emission detection rate with Fermi/LAT. Sci China-Phys Mech Astron, 2010, 53: 73–77

    Article  ADS  Google Scholar 

  27. Sakamoto T, Lamb D Q, Graziani C, et al. High energy transient explorer 2 observations of the extremely soft X-ray flash XRF 020903. Astrophys J, 2004, 602: 875–885

    Article  ADS  Google Scholar 

  28. Amati L, Frontera F, Guidorzi C. Extremely energetic Fermi gammaray bursts obey spectral energy correlations. Astron Astrophys, 2009, 508: 173–180

    Article  ADS  Google Scholar 

  29. Meegan C, Lichti G, Bhat P N, et al. The fermi gamma-ray burst monitor. Astrophys J, 2009, 702: 791–804

    Article  ADS  Google Scholar 

  30. Liang E, Kargatis V. Dependence of the spectral evolution of Γ-ray bursts on their photon fluence. Nature, 1996, 381: 49–51

    Article  ADS  Google Scholar 

  31. Lu R J, Hou S J, Liang E W. The E p-flux correlation in the rising and decaying phases of gamma-ray burst pulses: evidence for viewing angle effect? Astrophys J, 2010, 720: 1146–1154

    Article  ADS  Google Scholar 

  32. Zhang B, Lu R J, Liang EW, et al. GRB 110721A: Photosphere “death line” and the physical origin of the GRB band function. Astrophys J, 2012, 758: L34

    Article  ADS  Google Scholar 

  33. Campana S, Mangano V, Blustin A J, et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature, 2006, 442: 1008–1010

    Article  ADS  Google Scholar 

  34. Mészáros P, Rees M J. Steep slopes and preferred breaks in gamma-ray burst spectra: The role of photospheres and comptonization. Astrophys J, 2000, 530: 292–298

    Article  ADS  Google Scholar 

  35. Pe’er A, Mészáros P, Rees M J. The observable effects of a photospheric component on GRB and XRF prompt emission spectrum. Astrophys J, 2006, 642: 995–1003

    Article  ADS  Google Scholar 

  36. Toma K, Wu X F, Mészáros P. Photosphere-internal shock model of gamma-ray bursts: Case studies of Fermi/LAT bursts. Mon Not R Astron Soc, 2011, 415: 1663–1680

    Article  ADS  Google Scholar 

  37. Meszaros P, Rees M J, Papathanassiou H. Spectral properties of blastwave models of gamma-ray burst sources. Astrophys J, 1994, 432: 181–193

    Article  ADS  Google Scholar 

  38. Wang X Y, Li Z, Dai Z G, et al. GRB 080916C: On the radiation origin of the prompt emission from keV/MeV to GeV. Astrophys J, 2009, 698: L98–L102

    Article  ADS  Google Scholar 

  39. Daigne F, Bošnjak Z, Dubus G. Reconciling observed gamma-ray burst prompt spectra with synchrotron radiation. Astron Astrophys, 2011, 526: A110

    Article  ADS  Google Scholar 

  40. Zhao X H, Dai Z G, Liu T, et al. Inverse compton emission from the prompt optical emission region in gamma-ray bursts. Astrophys J, 2010, 708: 1357–1365

    Article  ADS  Google Scholar 

  41. Rees M J, Mészáros P. Dissipative photosphere models of gamma-ray bursts and X-ray flashes. Astrophys J, 2005, 628: 847–852

    Article  ADS  Google Scholar 

  42. Giannios D. Prompt GRB emission from gradual energy dissipation. Astron Astrophys, 2008, 480: 305–312

    Article  ADS  MATH  Google Scholar 

  43. Beloborodov A M. Collisional mechanism for gamma-ray burst emission. Mon Not R Astron Soc, 2010, 407: 1033–1047

    Article  ADS  Google Scholar 

  44. Pe'er A, Ryde F. A theory of multicolor blackbody emission from relativistically expanding plasmas. Astrophys J, 2011, 732: 49

    Article  ADS  Google Scholar 

  45. Racusin J L, Karpov S V, Sokolowski M, et al. Broadband observations of the naked-eye Γ-ray burst GRB080319B. Nature, 2008, 455: 183–188

    Article  ADS  Google Scholar 

  46. Kumar P, Panaitescu A. What did we learn from gamma-ray burst 080319B? Mon Not R Astron Soc, 2008, 391: L19–L23

    ADS  Google Scholar 

  47. Piran T, Sari R, Zou Y C. Observational limits on inverse compton processes in gamma-ray bursts. Mon Not R Astron Soc, 2009, 393: 1107–1113

    Article  ADS  Google Scholar 

  48. Resmi L, Zhang B. Gamma-ray burst prompt emission variability in synchrotron and synchrotron self-compton light curves. Mon Not R Astron Soc, 2012, 426: 1385–1395

    Article  ADS  Google Scholar 

  49. Fan Y Z, Wei D M, Zhang F W, et al. The photospheric radiation model for the prompt emission of gamma-ray bursts: Interpreting four observed correlations. Astrophys J, 2012, 755: L6

    Article  ADS  Google Scholar 

  50. Zhang B, Pe’er A. Evidence of an initially magnetically dominated out-flow in GRB 080916C. Astrophys J, 2009, 700: L65–L68

    Article  ADS  Google Scholar 

  51. Zhang B, Yan H. The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. Astrophys J, 2011, 726: 90

    Article  ADS  Google Scholar 

  52. Giannios D. The peak energy of dissipative gamma-ray burst photospheres. Mon Not R Astron Soc, 2012, 422: 3092–3098

    Article  ADS  Google Scholar 

  53. Veres P, Zhang B B, Mészáros P. The extremely high peak energy of GRB 110721A in the context of a dissipative photosphere synchrotron emission model. Astrophys J, 2012, 761: L18

    Article  ADS  Google Scholar 

  54. Vurm I, Lyubarsky Y, Piran T. On thermalization in gamma-ray burst jets and the peak energies of photospheric spectra. Astrophys J, 2013, 764: 143

    Article  ADS  Google Scholar 

  55. Nemmen R S, Georganopoulos M, Guiriec S, et al. A universal scaling for the energetics of relativistic jets from black hole systems. Science, 2012, 338: 1445–1448

    Article  ADS  Google Scholar 

  56. Zhang J, Liang EW, Sun X N, et al. Radiation mechanism and jet composition of gamma-ray bursts and GeV-TeV-selected radio-loud active galactic nuclei. Astrophys J, 2013, 774: L5

    Article  ADS  Google Scholar 

  57. Wu Q, Zou Y C, Cao X, et al. A uniform correlation between synchrotron luminosity and doppler factor in gamma-ray bursts and blazars: A hint of similar intrinsic luminosities? Astrophys J, 2011, 740: L21

    Article  ADS  Google Scholar 

  58. Wang J, Wei J Y. Gamma-ray burst afterglows as analogs of high-frequency-peaked BL Lac objects. Astrophys J, 2011, 726: L4

    Article  ADS  Google Scholar 

  59. Wang F Y, Yi S X, Dai Z G. Similar radiation mechanism in gamma-ray bursts and blazars: Evidence from two luminosity correlations. arXiv: 1403.7857

  60. Fossati G, Maraschi L, Celotti A, et al. A unifying view of the spectral energy distributions of blazars. Mon Not R Astron Soc, 1998, 299: 433–448

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnWei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, F., Wang, Y., Liang, Y. et al. Comparison between the time-integrated spectrum and the peak time spectrum of gamma-ray bursts and possible implications. Sci. China Phys. Mech. Astron. 58, 1–8 (2015). https://doi.org/10.1007/s11433-014-5575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5575-1

Keywords

Navigation