Skip to main content
Log in

Dramatic transition between electric and magnetic rotations in 106Ag

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The lifetimes for the states of magnetic dipole band in 106Ag have been measured using the Doppler-shift attenuation method via the reaction of 100Mo(11B, 5n)106Ag at a beam energy of 60 MeV. The reduced transition strengths of the magnetic dipole band, the B(M1)/B(E2) ratios together with the signature of the level energy as a function of angular momentum for the positive parity states of 106Ag show that a drastic change of excitation mode, that is, from electric rotation to magnetic rotation, occurs within one unit of spin at around I π = 12+. Theoretical calculations based on the triaxial projected shell model consistently reproduce the experimental data and provide an explanation on the nature of observed phenomena such that the dynamical drift of the rotational axis suddenly from the principal axis to the tilted one, along the positive parity bands of 106Ag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohr A, Mottelson B R. Nuclear Structure. Vol. 2. Singapore: World Scientific, 1998

    Book  Google Scholar 

  2. Frauendorf S. Tilted cranking. Nucl Phys A, 1993, 557: 259–276

    Article  ADS  Google Scholar 

  3. Clark R M, Asztalos S J, Baldsiefen G, et al. Evidence for “magnetic rotation” in nuclei: Lifetimes of states in the M1 bands of 198,199Pb. Phys Rev Lett, 1997, 78: 1868–1871

    Article  ADS  Google Scholar 

  4. Meng J, Peng J, Zhang S Q, et al. Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation. Front Phys, 2013, 8: 55–79

    Article  Google Scholar 

  5. Clark R M, Wadsworth R, Paul E S, et al. First observation of a collective dipole rotational band in the A ∼ 200 mass region. Phys Lett B, 1992, 275: 247–251

    Article  ADS  Google Scholar 

  6. Baldsiefen G, Hübel H, Mehta D, et al. Oblate collective bands in 199Pb and 200Pb. Phys Lett B, 1992, 275: 252–258

    Article  ADS  Google Scholar 

  7. Kuhnert A, Stoyer M A, Becker J A, et al. Oblate collectivity in 197Pb. Phys Rev C, 1992, 46: 133–143

    Article  ADS  Google Scholar 

  8. Schnare H, Schwengner R, Frauendorf S, et al. First evidence of magnetic rotation in the A = 80 region. Phys Rev Lett, 1999, 82: 4408–4411

    Article  ADS  Google Scholar 

  9. Gadea A, de Angelis G, Fahlander C, et al. Magnetic rotation in the 105Sn nucleus. Phys Rev C, 1997, 55: R1–R4

    Article  ADS  Google Scholar 

  10. Brandolini F, Ionescu-Bujor M, Medina N H, et al. Lifetimes of a shears band in 139Sm. Phys Lett B, 1996, 388: 468–474

    Article  ADS  Google Scholar 

  11. Frauendorf S. Tilted rotation of weakly deformed and triaxial nuclei. Z Phys A, 1997, 358: 163–167

    Article  ADS  Google Scholar 

  12. Frauendorf S, Meng J. Tilted rotation of triaxial nuclei. Nucl Phys A, 1997, 617: 131–147

    Article  ADS  Google Scholar 

  13. Frauendorf S. Atomic clusters as a branch of nuclear physics. Rev Mod Phys, 2001, 73: 463–514

    Article  ADS  Google Scholar 

  14. Peng J, Meng J, Ring P, et al. Covariant density functional theory for magnetic rotation. Phys Rev C, 2008, 78: 024313

    Article  ADS  Google Scholar 

  15. Clark R M, Macchiavelli A O. The shears mechanism in nuclei. Ann Rev Nucl Part Sci, 2000, 50: 1–36

    Article  ADS  Google Scholar 

  16. Hübel H. Magnetic rotation in nuclei. Prog Part Nucl Phys, 2005, 54: 1–69

    Article  ADS  Google Scholar 

  17. Amita, Jain A K, Singh B. Table of magnetic dipole rotational bands. At Data Nucl Data Tables, 2000, 74: 283–331

    Article  ADS  Google Scholar 

  18. Zhu L H, Wu X G, He C Y, et al. Magnetic rotation and chirality and X(5) critical symmetry in nucleus. AIP Conf Proc, 2010, 1235: 363–369

    Article  ADS  Google Scholar 

  19. He C Y, Li X Q, Zhu L H, et al. Magnetic rotation in 112In. Phys Rev C, 2011, 83: 024309

    Article  ADS  Google Scholar 

  20. Li X W, Li J, Lu J B, et al. Candidate antimagnetic rotational band in 112In. Phys Rev C, 2012, 86: 057305

    Article  ADS  Google Scholar 

  21. He C Y, Li X Q, Zhu L H, et al. High-spin yrast and yrare structures in 112In. Eur Phys J A, 2010, 46: 1–4

    Article  ADS  Google Scholar 

  22. Ma K Y, Lu J B, Yang D, et al. Level structures of 113In. Eur Phys J A, 2012, 48: 82–89

    Article  ADS  Google Scholar 

  23. Li C B, Li J, Wu X G, et al. Magnetic rotation in doubly odd nucleus 114In. Nucl Phys A, 2012, 892: 34–42

    Article  ADS  Google Scholar 

  24. He C Y, Zhang B, Zhu L H, et al. Quest for chirality in 107Ag. Plasma Sci Technol, 2012, 14: 518–520

    Article  ADS  Google Scholar 

  25. Zhang B, Zhu L H, Sun H B, et al. New band structures in 107Ag. Chin Phys C, 2011, 35: 1009–1012

    Article  ADS  Google Scholar 

  26. Wang S Y, Duan B T, Zhu X X, et al. Structural evolution of the intruder band in 118Sn. Chin Phys C, 2009, 33: 838–841

    Article  ADS  Google Scholar 

  27. Wang S Y, Qi B, Sun D P, et al. Shape coexistence and strongly coupled bands in 118Sb. Phys Rev C, 2010, 82: 057303

    Article  ADS  Google Scholar 

  28. Wang S Y, Sun D P, Qi B, et al. Collective and noncollective states in 116Sb. Phys Rev C, 2012, 86: 064302

    Article  ADS  Google Scholar 

  29. He C Y, Yu B B, Zhu L H, et al. Band structures in 106Pd. Phys Rev C, 2012, 86: 047302

    Article  ADS  Google Scholar 

  30. Liu C, Wang S Y, Qi B, et al. Configuration assignment of the positiveparity structures in 108Ag. Int J Mod Phys E, 2011, 20: 2351–2359

    Article  ADS  Google Scholar 

  31. Radford D C. ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets. Nucl Instr Meth Phys Res A, 1995, 361: 297–305

    Article  ADS  Google Scholar 

  32. He C Y, Zhu L H, Wu X G, et al. Band structures in 106Ag and systematics of shears mechanism in the A ∼ 110 mass region. Phys Rev C, 2010, 81: 057301

    Article  ADS  Google Scholar 

  33. Jerrestam D, Klamra W, Gizon J, et al. Collective bands in 106Ag and 107Ag. Nucl Phys A, 1994, 577: 786–812

    Article  ADS  Google Scholar 

  34. Popli R, Rickey F A, Samuelson L E, et al. High-angular-momentum states in 106Ag and their rotational interpretation. Phys Rev C, 1981, 23: 1085–1104

    Article  ADS  Google Scholar 

  35. Gascon J, Yu C-H, Hagemann G B, et al. Configuration-dependent transition rates in 157Ho. Nucl Phys A, 1990, 513: 344–372

    Article  ADS  Google Scholar 

  36. Ziegler J F, Biersack J P, Littmark U. The Stopping and Range of Ions in Solid, Vol. 1. New York: Pergamon, 1985

    Google Scholar 

  37. Deo A Y, Patel S B, Tandel S K, et al. Systematics of the shears mechanism in silver isotopes. Phys Rev C, 2006, 73: 034313

    Article  ADS  Google Scholar 

  38. Gao Z C, Chen Y S, Sun Y. Signature inversionŁmanifestation of drift of the rotational axis in triaxial nuclei. Phys Lett B, 2006, 634: 195–199

    Article  ADS  Google Scholar 

  39. Liu S H, Hamilton J H, Ramayya A V, et al. Signature inversion in oddodd 114Rh: First identification of high-spin states in very neutron-rich 114Rh and application of the triaxial projected shell model. Phys Rev C, 2011, 83: 064310

    Article  ADS  Google Scholar 

  40. Zheng Y, Zhu L H, Wu X G, et al. Abnormal signature inversion and multiple alignments in doubly odd 126I. Phys Rev C, 2012, 86: 014320

    Article  ADS  Google Scholar 

  41. Bengtsson T, Ragnarsson I. Rotational bands and particle-hole excitations at very high spin. Nucl Phys A, 1985, 436: 14–82

    Article  ADS  Google Scholar 

  42. Zhao P W, Zhang S Q, Peng J, et al. Novel structure for magnetic rotation bands in 60Ni. Phys Lett B, 2011, 699: 181–186

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LiHua Zhu or YongShou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhu, L., Chen, Y. et al. Dramatic transition between electric and magnetic rotations in 106Ag. Sci. China Phys. Mech. Astron. 57, 1669–1675 (2014). https://doi.org/10.1007/s11433-014-5533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5533-y

Keywords

Navigation