Skip to main content
Log in

Radial deformation and adhesion of carbon nanotube

碳纳米管的径向变形与黏附

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The van der Waals (vdW) interactions of carbon nanotube (CNT)-substrate and CNT-CNT can cause strong adhesion. The adhesion can lead to radial deformation of CNTs, which is shown in both experiments and theoretical analysis. A scaling approach is used to predict the mechanical properties, vdW adhesion, and the elastic deformation of CNTs. It is found that the indentation of CNT is proportional to R 7/4 and h −3/2 in nanotube-substrate system and two same CNT system. Here, R and h are the radius and the wall thickness of CNT, respectively. The indentation ratio H 1/H 2 for CNT-CNT is proportional to (R 1/R 2)3/2 and (h 2/h 1)3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruoff R S, Tersoff J, Lorents D C, et al. Radial deformation of carbon nanotubes by van der Waals forces. Nature, 1993, 364: 514–516

    Article  ADS  Google Scholar 

  2. Ghopra N G, Benedict L X, Crespi V H, et al. Fully collapsed carbon nanotubes. Nature, 1995, 377: 135–138

    Article  ADS  Google Scholar 

  3. Gao G, Cagin T, Goddard III W A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 1998, 9: 184–191

    Article  ADS  Google Scholar 

  4. Zhou L J, Kang Y L, Guo J G. Theoretical model of double-walled carbon nanotube pullout from a composite matrix. Sci China-Phys Mech Astron, 2012, 55: 1004–1009

    Article  ADS  Google Scholar 

  5. Hertel T, Walkup R E, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B, 1998, 58: 13870

    Article  ADS  Google Scholar 

  6. Sun C Q, Liu K X, Hong Y S. Dynamic shell buckling behavior of multi-walled carbon nanotubes embedded in an elastic medium. Sci China-Phys Mech Astron, 2013, 56: 483–490

    Article  ADS  Google Scholar 

  7. Li D T, Cheng Y J, Cai M, et al. Uniform arrays of carbon nanotubes applied in the field emission devices. Sci China-Phys Mech Astron, 2013, 56: 2081–2084

    Article  ADS  Google Scholar 

  8. Xu K, Tian X J, Wu C D, et al. Study on the large-scale assembly and fabrication method for SWCNTs nano device. Sci China-Phys Mech Astron, 2013, 56: 556–561

    Article  ADS  Google Scholar 

  9. Liu B, Jiang H, Johnson H T, et al. The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes. J Mech Phys Solids, 2004, 52: 1–26

    Article  ADS  Google Scholar 

  10. Zheng M, Zou L F, Wang H, et al. Engineering radial deformations in single-walled carbon and boron nitride nanotubes using ultrathin nanomembranes. ACS Nano, 2012, 6: 1814–1822

    Article  Google Scholar 

  11. Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985. 84–103

    Book  MATH  Google Scholar 

  12. Timoshenko S, Woinowsky-Kerieger S. Theory of Plates and Shells. 2nd ed. Singapore: McGraw-Hill Book Company Inc., 1959. 38–40

    Google Scholar 

  13. Landau L D, Lifshitz E M. Theory of Elasticity. 3rd ed. New York: Pergamon Press, 1986. 38–57

    Google Scholar 

  14. Kralj-Iglic V, Remskar M, Vidmar G, et al. Deviatoric elasticity as a possible physical mechanism explaining collapse of inorganic micro and nanotubes. Phys Lett A, 2002, 296: 151–155

    Article  ADS  Google Scholar 

  15. Pantano A, Parks D M, Boyce M C. Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids, 2004, 52: 789–821

    Article  ADS  MATH  Google Scholar 

  16. Tang T, Jagota A, Hui C Y, et al. Collapse of single-walled carbon nanotubes. J Appl Phys, 2005, 97: 074310

    Article  ADS  Google Scholar 

  17. Hasegawa M, Nishidate K. Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure. Phys Rev B, 2006, 74: 115401

    Article  ADS  Google Scholar 

  18. Lu W, Chou T W, Kim B S. Radial deformation and its related energy variations of single-walled carbon nanotubes. Phys Rev B, 2011, 83: 134113

    Article  ADS  Google Scholar 

  19. Kaukonen M, Gulans A, Havu P, et al. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations. J Comput Chem, 2012, 33: 652–658

    Article  Google Scholar 

  20. Wang G W, Zhang Y, Zhao Y P, et al. Pull-in instability study of carbon nanotube tweezers under the influence of van der Waals forces. J Micromech Microeng, 2004, 14: 1119–1125

    Article  Google Scholar 

  21. Israelachvili J N. Intermolecular and Surface Forces. 3rd ed. Amsterdam: Academic Press, 2011. 277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GenWei Wang.

Additional information

Recommended by ZHAO YaPu (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G. Radial deformation and adhesion of carbon nanotube. Sci. China Phys. Mech. Astron. 57, 1569–1574 (2014). https://doi.org/10.1007/s11433-014-5502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5502-5

Keywords

关键词

Navigation