Skip to main content
Log in

Recent advances and future challenges for mobile network virtualization

  • Review
  • Special Focus on Mobile Network Virtualization
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Recently, network function virtualization (NFV) was proposed as a paradigm shift in the telecommunication industry. Both industry and academia have drawn significant attention in mobile network virtualization. NFV decouples the software implementation of network functions from the underlying hardware, leading to considerable reductions in operating expenses (OPEX) and capital expenses (CAPEX), and facilitating the network deployment. However, as an emerging technology, NFV brings both challenges and opportunities in developing new architectures, applying and deployment. In this paper, we first survey the related work of NFV, and then propose promising research directions in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu J, Zhang Z, Hong Y, et al. Cloud radio access network (C-RAN): a primer. IEEE Netw, 2015, 29: 35–41

    Article  Google Scholar 

  2. China Mobile Research Institute. C-RAN: the road towards green RAN. White Paper Version 2.5, 2011

  3. Han B, Gopalakrishnan V, Ji L, et al. Network function virtualization: challenges and opportunities for innovations. IEEE Commun Mag, 2015, 53: 90–97

    Article  Google Scholar 

  4. Guerzoni R. Network functions virtualisation: an introduction, benefits, enablers, challenges and call for action, introductory white paper. In: Proceedings of SDN OpenFlow World Congress, Darmstadt, 2012. 1–16

    Google Scholar 

  5. Abdelwahab S, Hamdaoui B, Guizani M, et al. Network function virtualization in 5G. IEEE Commun Mag, 2016, 54: 84–91

    Article  Google Scholar 

  6. Pentikousis K, Wang Y, Hu W. Mobileflow: toward software-defined mobile networks. IEEE Commun Mag, 2013, 51: 44–53

    Article  Google Scholar 

  7. European Telecommunications Standards Institute (ETSI). Industry Specification Groups (ISG)-NFV. http://www. etsi.org/technologies-clusters/technologies/nfv. 2015

  8. Alcatel Lucent RedHat. CloudBand with OpenStack as NFV platform. Strategic White Paper, NFV Insights Series. http://www.alcatel-lucent.com/. 2014

  9. Cisco. NFV management and orchestration: enabling rapid service innovation in the era of virtualization. http://www. cisco.com/. 2015

  10. F5 Netw. NFV: Beyond Virtualization. White Paper. https://f5.com/resources/white-papers/nfv-beyond-virtualiza tion. 2014

  11. Overture Netw. Overture 65vSE: open platform for virtualization at the service edge. http://www.overturenetworks. com/products/overture-65vse. 2015

  12. Wei K, Xu H, Yang Y, et al. Green cloud computing based on live migration of virtual machine and its technical implementation. Comput Appl Softw, 2013, 30: 101–103

    Google Scholar 

  13. Chai R, Hu X, Li H P, et al. SDN-based 5G mobile communication network architecture. J Chongqing Univ Posts Telecommun Nat Sci, 2015, 27: 569–576

    Google Scholar 

  14. Yao C. Energy conservation technology research of load balancing based on SDN. Dissertation for Master Degree. Beijing: Beijing University of Posts and Telecommunications, 2015. 1–73

    Google Scholar 

  15. Soares J, Dias M, Carapinha J, et al. Cloud4NFV: a platform for virtual network functions. In: Proceedings of IEEE 3rd International Conference on Cloud Networking, Luxembourg, 2014. 288–293

    Google Scholar 

  16. Soares J, Gon¸calves C, Parreira B, et al. Toward a telco cloud environment for service functions. IEEE Commun Mag, 2015, 53: 98–106

    Article  Google Scholar 

  17. Clayman S, Maini E, Galis A, et al. The dynamic placement of virtual network functions. In: Proceedings of Network Operations and Management Symposium, Krakow, 2014. 1–9

    Google Scholar 

  18. Riccobene V, Lombardo A, Manzalini A, et al. Network functions at the edge (NetFATE): design and implementation issues. National Telecommunications and Information Theory Group (GTTI), 2014

    Google Scholar 

  19. Maini E, Manzalini A. Management and orchestration of virtualized network functions. In: Monitoring and Securing Virtualized Networks and Services. Berlin: Springer, 2014. 52–56

    Google Scholar 

  20. Shen W, Yoshida M, Kawabata T, et al. vConductor: an NFV management solution for realizing end-to-end virtual network services. In: Proceedings of Network Operations and Management Symposium, Krakow, 2014. 1–6

    Google Scholar 

  21. Shen W, Yoshida M, Minato K, et al. vConductor: an enabler for achieving virtual network integration as a service. IEEE Commun Mag, 2015, 53: 116–124

    Article  Google Scholar 

  22. Donadio P, Fioccola G B, Canonico R, et al. A PCE-based architecture for the management of virtualized infrastructures. In: Proceedings of IEEE 3rd International Conference on Cloud Networking, Luxembourg, 2014. 223–228

    Google Scholar 

  23. Bolla R, Lombardo C, Bruschi R, et al. DROPv2: energy efficiency through network function virtualization. IEEE Netw, 2014, 28: 26–32

    Article  Google Scholar 

  24. Giotis K, Kryftis Y, Maglaris V. Policy-based orchestration of NFV services in software-defined networks. In: Proceedings of the 1st IEEE Conference on Network Softwarization, London, 2015

    Google Scholar 

  25. Wickboldt J, de Jesus W, Isolani P, et al. Software-defined networking: management requirements and challenges. IEEE Commun Mag, 2015, 53: 278–285

    Article  Google Scholar 

  26. Chappell C. Deploying virtual network functions: the complementary roles of TOSCA and NETCONF/YANG. Heavy Reading, Cisco, Alcatel-Lucent, New York, NY, USA, Tech. White Paper. http://www.tail-f.com/wordpress/ wpcontent/uploads/2015/02/HR-Cisco-ALU-TOSCA-YANG-WP-2-17-15.pdf. 2015

  27. Global What if Analyzer of NeTwork Energy Consump Tion (GWATT). Bell labs application able to measure the impact of technologies like SDN & NFV on network energy consumption. Bell Labs, Alcetel Lucent, Murray Hill, NJ, USA, White Paper, 2015. http://gwatt.net/intro/1

  28. Global e-Sustainability Initiative (GeSI) SMARTer2020: The Role of ICT in Driving a Sustainable Future. http://gesi.org/SMARTer2020. 2015

  29. Gary C. Clicking Clean: How Companies Are Creating the Green Internet. Greenpeace International, 2014

  30. Natural Resources Defense Council (NRDC). Data Center Efficiency Assessment–Scaling up Energy Efficiency Across the Data Center Industry: Evaluating Key Drivers and Barriers. New York, 2014. https://www.nrdc.org/sites/ default/files/data-center-efficiency-assessment-IP.pdf

  31. Beloglazov A, Buyya R, Lee Y C, et al. A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv Comput, 2010, 82: 47–111

    Article  Google Scholar 

  32. Chih-Lin I, Huang J, Duan R, et al. Recent progress on C-RAN centralization and cloudification. Access IEEE, 2014, 2: 1030–1039

    Article  Google Scholar 

  33. Masanet E, Shehabi A, Liang J, et al. The energy efficiency potential of cloud-based software: a U.S. case study. Lawrence Berkeley National Laboratory, 2013

  34. Herrera J G, Botero J F. Resource allocation in NFV: a comprehensive survey. IEEE Trans Netw Serv Manage, 2016, 13: 1

    Article  Google Scholar 

  35. Clayman S, Maini E, Galis A, et al. The dynamic placement of virtual network functions. In: Proceedings of IEEE Network Operations and Management Symposium (NOMS), Krakow, 2014. 1–9

    Google Scholar 

  36. Zhang Q, Wang X, Kim I, et al. Vertex-centric computation of service function chains in multi-domain networks. In: Proceedings of NetSoft Conference and Workshops (NetSoft), Seoul, 2016. 211–218

    Google Scholar 

  37. Jang I, Choo S, Kim M, et al. Optimal network resource utilization in service function chaining. In: Proceedings of NetSoft Conference and Workshops (NetSoft), Seoul, 2016. 11–14

    Google Scholar 

  38. Kuo T W, Liou B H, Lin K C J, et al. Deploying chains of virtual network functions: on the relation between link and server usage. In: Proceedings of IEEE INFOCOM 2016-the 35th Annual IEEE International Conference on Computer Communications, San Francisco, 2016. 1–9

    Chapter  Google Scholar 

  39. Riera J F, Hesselbach X, Escalona E, et al. On the complex scheduling formulation of virtual network functions over optical networks. In: Proceedings of the 16th International Conference on Transparent Optical Networks (ICTON), Graz, 2014. 1–5

    Google Scholar 

  40. Riera J F, Escalona E, Batall´e J, et al. Virtual network function scheduling: Concept and challenges. In: Proceedings of International Conference on Smart Communications in Network Technologies (SaCoNeT), Vilanova I La Geltru, 2014. 1–5

    Google Scholar 

  41. Mijumbi R, Serrat J, Gorricho J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions. In: Proceedings of the 1st IEEE Conference on Network Softwarization (NetSoft), London, 2015. 1–9

    Chapter  Google Scholar 

  42. Beck M T, Botero J F. Coordinated allocation of service function chains. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), San Diego, 2015. 1–6

    Google Scholar 

  43. ETSI Group Specification: Network Functions Virtualization (NFV) Infrastructure Compute Domain. 2014

  44. ETSI Group Specification: Network Functions Virtualization (NFV) Infrastructure Hypervisor Domain. 2015

  45. ETSI Group Specification: Network Functions Virtualization (NFV) Infrastructure Network Domain. 2014

  46. Hawilo H, Shami A, Mirahmadi M, et al. NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC). IEEE Netw, 2014, 28: 18–26

    Article  Google Scholar 

  47. Jang H, Jeong J, Kim H, et al. A survey on interfaces to network security functions in network virtualization. In: Proceedings of IEEE International Conference on Advanced Information Networking and Applications Workshops, Gwangiu, 2015. 160–163

    Google Scholar 

  48. Pastor A, Lopez D. Access Use Cases for an Open OAM Interface to Virtualized Security Services. draft-pastori2nsfaccess-usecases-00 (work in progress). http://ietfreport.isoc.org/idref/draft-pastor-i2nsf-access-usecases/. 2014

  49. Qi M, Zhuang X. Integrated Security with Access Network Use Case. draft-qi-i2nsf-access-networkusecase-02 (work in progress). https://tools.ietf.org/html/draft-qi-i2nsf-accessnetwork-usecase-00. 2015

  50. Dunbar L, Leymann N, Zarny M. I2NSF Data Center Use Cases. draft-zarny-i2nsf-data-center-use-cases-00. https://tools.ietf.org/html/draft-zarny-i2nsf-data-center-use-cases-00. 2014

  51. Jeong J, Seo J, Cho G, et al. A framework for security services based on software-defined networking. In: Proceedings of IEEE 29th International Conference on Advanced Information Networking and Applications Workshops (WAINA), Gwangiu, 2015. 150–153

    Google Scholar 

  52. Price C, Rivera S. Opnfv: an open platform to accelerate nfv. White Paper, 2012.

  53. Keeney J, van der Meer S, Fallon L. Towards real-time management of virtualized telecommunication networks. In: Proceedings of the 10th International Conference on Network and Service Management (CNSM) and Workshop, Rio de Janeiro, 2014. 388–393

    Chapter  Google Scholar 

  54. Szabo R, Kind M, Westphal F J, et al. Elastic network functions: opportunities and challenges. IEEE Netw, 2015, 29: 15–21

    Article  Google Scholar 

  55. Montero D, Yannuzzi M, Shaw A, et al. Virtualized security at the network edge: a user-centric approach. IEEE Commun Mag, 2015, 53: 176–186

    Article  Google Scholar 

  56. Gember-Jacobson A, Viswanathan R, Prakash C, et al. OpenNF: enabling innovation in network function control. ACM SIGCOMM Comput Commun Rev, 2015, 44: 163–174

    Article  Google Scholar 

  57. Cisco and/or Its Affiliates. Cisco Evolved Services Platform Service Broker At-a-Glance. http://www.cisco.com/c/ dam/en/us/solutions/collateral/service-provider/evolved-services-platform/at-a-glance-c45-735812.pdf. 2014

  58. Alcatel-Lucent. Providing Security in NFV: Challenges and Opportunities. Alcatel-Lucent White Paper. http://docplayer.net/17132159-Providing-security-in-nfv-challenges-and-opportunities.html. 2014

  59. VMware. Datasheet: VMware vCloud NFV. http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/ solutions/vmware-vcloud-nfv-datasheet.pdf. 2015

  60. Distributed Management Task Force (DMTF). Open Virtualization Format (OVS). http://www.dmtf.org/standards/ ovf. 2015

  61. OASIS Standard. Topology and Orchestration Specification for Cloud Applications, version 1.0. http://docs.oasisopen. org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf. 2013

  62. Schönwälder J, Björklund M, Shafer P. Network configuration management using NETCONF and YANG. IEEE Commun Mag, 2010, 48: 166–173

    Article  Google Scholar 

  63. Reilly J P. Implementing the TM forum information framework (SID). A Practitioner’s Guide. Version 1.0, 2011. http://inform.tmforum.org/wp-content/uploads/2014/05/Implementing-the-SID-v1dot0b-Chapters-1-through-3.pdf

  64. NGMN Alliance. Next Generation Mobile Networks, White paper. http://10.3.200.202/cache/7/03/ngmn.org/ 3d0382573311a3ded8ba2adf7a0be47a/NGMN 5G White Paper V1 0.pdf. 2015

  65. Tao X F, Xu X D, Wang Q, et al. Ultra-dense aggregated heterogeneous cooperation: to achieve 5G mobile communications with four high requirements. IEEE Spectrum Tech Insider, 2017, 54: 59–61

    Google Scholar 

Download references

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (Grant No. 2014AA01A701), Nature and Science Foundation of China (Grants Nos. 61325006, 61421061), International Collaboration Project (Grant No. 2015DFT10160), Beijing Training Project for the Leading Talents in S&T (Grant No. Z141101001514026), and 111 Project of China (Grant No. B16006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Han, Y., Xu, X. et al. Recent advances and future challenges for mobile network virtualization. Sci. China Inf. Sci. 60, 040301 (2017). https://doi.org/10.1007/s11432-017-9045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9045-1

Keywords

Navigation