Skip to main content
Log in

Upper bounds on the capacity for optical intensity channels with AWGN

基于AWGN模型下的光通信信道容量上界

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The channel capacity of the optical wireless communication (OWC) systems is still a problem that has not an optimal and close-form expression, in spite of OWC can be used to achieve high data rates. This paper presents novel upper bounds on the channel capacity of an optical intensity modulated and directed detection (IM/DD) system under peak-power and average-power constraints. The channel is modeled as an additive white Gaussian noise (AWGN) optical channel. The bounds are derived based on sphere-based signal space argument. Simulation results show the proposed bounds are tight at both high and low signal-to-noise ratios (SNRs). Compared to those reported bounds, the derived bounds are better at high SNRs region in particular, and the expressions are simpler and unique for the whole range of average-to-peak-power ratio.

创新点

尽管无线光通信可以实现更高的通信速率, 但是针对光通信信道容量所开展的研究仍没有得出一个最优且闭合的结论。此外, 由于传统的移动通信系统与光通信系统的调制和解调方式并不相同, 在传统移动通信中所得到的结论并不能直接应用在光通信系统中。本文主要是建立在AWGN模型下, 通过基于球体的信号空间模型理论, 在峰值功率和平均功率的限制下, 推导了IM/DD调制下的光信道容量上界表达式。与现有的结论相比, 所推导的上界不仅在高SNR下性能更优, 而且表达式更简单。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems - part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744

    Article  Google Scholar 

  2. Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems - part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 60: 499–509

    Article  Google Scholar 

  3. Zhao D, Long K, Zheng Y, et al. Channel power control in optical amplifiers to mitigate physical impairment in optical network. Sci China Inf Sci, 2015, 58: 022302

    Google Scholar 

  4. Huang S, Zhang Y, Sun L, et al. A load balancing multi-path routing scheme based on effective voids for optical burst switching networks. Sci China Inf Sci, 2015, 58: 102305

    MATH  Google Scholar 

  5. Lapidoth A, Moser S M. On the capacity of the discrete-time Poisson channel. IEEE Trans Inf Theory, 2009, 55: 303–322

    Article  MathSciNet  Google Scholar 

  6. Wang L, Wornell G W. A refined analysis of the Poisson channel in the high-photon-efficiency regime. IEEE Trans Inf Theory, 2014, 60: 4299–4311

    Article  MathSciNet  Google Scholar 

  7. Lapidoth A, Shapiro J H, Venkatesan V, et al. The discrete-time Poisson channel at low input powers. IEEE Trans Inf Theory, 2011, 57: 3260–3272

    Article  MathSciNet  Google Scholar 

  8. Lai L, Liang Y, Shitz S S. On the capacity bounds for Poisson interference channels. IEEE Trans Inf Theory, 2015, 61: 223–238

    Article  MathSciNet  Google Scholar 

  9. Aisha A, Lai L, Liang Y. Optimal power allocation for Poisson channels with time-varying background light. IEEE Trans Commun, 2015, 63: 4327–4338

    Article  Google Scholar 

  10. Alem-Karladani M M, Sepahi L, Jazayerifar M, et al. Optimum power allocation in parallel Poisson optical channel. In: Prococeedings of International Conference on Telecommunications, Zagreb, 2009. 285–288

    Google Scholar 

  11. Martinez A. Spectral efficiency of optical direct detection. J Opt Soc Amer B, 2007, 24: 739–749

    Article  Google Scholar 

  12. Lapidoth A, Moser S M, Wigger M A. On the capacity of free-space optical intensity channels. IEEE Trans Inf Theory, 2009, 55: 4449–4461

    Article  MathSciNet  Google Scholar 

  13. Agrell E, Alvarado A, Durisi G, et al. Capacity of a nonlinear optical channel with finite memory. J Lightwave Technol, 2014, 32: 2862–2876

    Article  Google Scholar 

  14. Moser S M. Capacity results of an optical intensity channel with input-dependent Gaussian noise. IEEE Trans Inf Theory, 2012, 58: 207–223

    Article  MathSciNet  Google Scholar 

  15. You R, Kahn J M. Upper-bounding the capacity of optical IM/DD channels with multiple-subcarrier modulation and fixed bias using trigonometric moment space method. IEEE Trans Inf Theory, 2002, 48: 514–523

    Article  MathSciNet  MATH  Google Scholar 

  16. Hranilovic S, Kschischang F R. Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise. IEEE Trans Inf Theory, 2004, 50: 784–795

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang J B, Hu Q S, Wang J, et al. Tight bounds on channel capacity for dimmable visible light communications. J Lightwave Technol, 2013, 31: 3771–3779

    Article  Google Scholar 

  18. Farid A A, Hranilovic S. Capacity bounds for wireless optical intensity channels with Gaussian noise. IEEE Trans Inf Theory, 2010, 56: 6066–6077

    Article  MathSciNet  Google Scholar 

  19. Jiang R, Wang Z, Wang Q, et al. A tight upper bound on channel capacity for visible light communications. IEEE Commun Lett, 2016, 20: 97–100

    Article  Google Scholar 

  20. Wang Q, Wang Z, Dai L. Asymmetrical hybrid optical OFDM for visible light communications with dimming control. IEEE Photonics Technol Lett, 2015, 27: 974–977

    Article  Google Scholar 

  21. Armstrong J. OFDM for optical communications. J Lightwave Technol, 2009, 27: 189–204

    Article  Google Scholar 

  22. Hranilovic S, Kschischang F R. Optical intensity-modulated direct detection channels: signal space and lattice codes. IEEE Trans Inf Theory, 2003, 49: 1385–1399

    Article  MathSciNet  MATH  Google Scholar 

  23. Farid A A, Hranilovic S. Channel capacity and non-uniform signalling for free-space optical intensity channels. IEEE J Sel Areas Commun, 2009, 27: 1553–1563

    Article  Google Scholar 

  24. Li X, Vucic J, Jungnickel V, et al. On the capacity of intensity-modulated direct-detection systems and the information rate of ACO-OFDM for indoor optical wireless applications. IEEE Trans Commun, 2012, 60: 799–809

    Article  Google Scholar 

  25. Betke U, Henk M. Intrinsic volumes and lattice points of crosspolytopes. Monatsh Mathematik, 1993, 115: 27–33

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61501109, 61571105, 61223001), National High Technology Research and Development Program of China (863) (Grant No. 2013AA013601), and Jiangsu National Science Foundation (Grant No. BK20140646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaichen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, Z., Wu, L. et al. Upper bounds on the capacity for optical intensity channels with AWGN. Sci. China Inf. Sci. 60, 022312 (2017). https://doi.org/10.1007/s11432-016-0452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0452-x

Keywords

关键词

Navigation