Skip to main content
Log in

CW interference mitigation in GNSS receiver based on frequency-locked loop

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Global navigation satellite system (GNSS) receivers are highly susceptible to continuous wave (CW) interference because the received signals are extremely weak. Current interference mitigation techniques mainly use a notch filter or transform domain. This paper proposes a computationally effective algorithm based on a frequency-locked loop (FLL) to mitigate interference in GNSS receivers. The performance of the algorithm is validated through an analysis of the characteristics of the interference reduction filter and interference estimation precision. A Monte Carlo simulation is used to compare the proposed algorithm with various previous algorithms: the adaptive IIR notch filter, adaptive linear-phase FIR filter, and N-sigma DFT algorithm. The simulation results show that the proposed algorithm exhibits excellent interference estimation precision and superior antijamming performance compared with the conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaplan E D, Hegarty C J. Understanding GPS: Principles and Applications. 2nd ed. Norwood: Artech House, 2005. 153–300

    Google Scholar 

  2. Chang C L, Juang J C. Performance analysis of narrowband interference mitigation and near-far resistance scheme for GNSS receivers. Sign Proc, 2010, 90: 2676–2685

    Article  MATH  Google Scholar 

  3. Wang Y Q, Li C, Xu D, et al. A new barycenter code discriminator for multi-access interference. Sci China Inf Sci, 2014, 57: 022311

    MATH  Google Scholar 

  4. Borio D. GNSS acquisition in the presence of continuous wave interference. IEEE Trans Aero Electron Syst, 2010, 46: 47–60

    Article  Google Scholar 

  5. Savasta S, Presti L L, Rao M. Interference mitigation in GNSS receivers by a time-frequency approach. IEEE Trans Aero Electron Syst, 2013, 49: 415–438

    Article  Google Scholar 

  6. Balaei A T, Motella B, Dempster A. A preventative approach to mitigating CW interference in GPS receivers. GPS Solutions, 2008, 12: 199–209

    Article  Google Scholar 

  7. Borio D, Camoriano L, Savasta S, et al. Time-frequency excision for GNSS applications. IEEE Syst J, 2008, 2: 27–37

    Article  Google Scholar 

  8. Lin T, Abdizadeh M, Broumandan A. Interference suppression for high precision navigation using vector-based GNSS software receivers. In: Proceedings of ION GNSS, Portland, 2011. 20–23

    Google Scholar 

  9. Punchalard R. Mean square error analysis of unbiased modified plain gradient algorithm for second-order adaptive IIR notch filter. Sign Proc, 2012, 92: 2815–2820

    Article  Google Scholar 

  10. Borio D, Camoriano L, Presti L L. Two-pole and multi-pole notch filters: a computationally effective solution for GNSS interference detection and mitigation. IEEE Syst J, 2008, 2: 38–47

    Article  Google Scholar 

  11. Petovello M, Borio D, Dovis F, et al. Impact of notch filtering on tracking loops for GNSS applications. Dissertation for Master Degree. Canada: UCalgary, 2009. 19–55

    Google Scholar 

  12. Ojeda O A, Grajal J, Lopez R G. Analytical performance of GNSS receivers using interference mitigation techniques. IEEE Trans Aero Electron Syst, 2013, 49: 885–906

    Article  Google Scholar 

  13. Capozza P T, Holland B J, Hopkinson T M, et al. A single-chip narrow-band frequency-domain excisor for a global positioning system (GPS) receiver. IEEE J Solid-State Circ, 2000, 35: 401–411

    Article  Google Scholar 

  14. Balaei A T, Dempster A G. A statistical inference technique for GPS interference detection. IEEE Trans Aero Electron Syst, 2009, 45: 1499–1511

    Article  Google Scholar 

  15. Ward P W. Performance comparisons between FLL, PLL and a novel FLL-assisted-PLL carrier tracking loop under RF interference conditions. In: Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1998), Nashville, 1998. 783–795

    Google Scholar 

  16. Foucras M, Ekambi B, Ngayap U, et al. Performance study of FLL schemes for a successful acquisition-to-tracking transition. In: Proceedings of IEEE/ION Position, Location and Navigation Symposium—PLANS, Monterey, 2014. 529–540

    Google Scholar 

  17. Quinn B G. Estimating frequency by interpolation using fourier coefficients. IEEE Trans Signal Process, 1994, 42: 1264–1268

    Article  Google Scholar 

  18. Provencher S. Parameters estimation of complex multitone signal in the DFT domain. IEEE Trans Signal Process, 2011, 59: 3001–3012

    Article  MathSciNet  Google Scholar 

  19. Betz J W, Kolodziejski K R. Generalized theory of code tracking with an early-late discriminator part ii: noncoherent processing and numerical results. IEEE Trans Aero Electron Syst, 2009, 45: 1557–1564

    Article  Google Scholar 

  20. Balaei A T, Dempster A G, Presti L L. Characterization of the effects of CW and pulse CW interference on the GPS signal quality. IEEE Trans Aero Electron Syst, 2009, 45: 1418–1431

    Article  Google Scholar 

  21. Wang Y Q, Gao L, Wu S L. Design of code tracking loop for spacecraft TT&C transponder (in Chinese). J Beijing Univ Posts and Telecommun, 2010, 33: 49–53

    Google Scholar 

  22. Liu Y Q, Ran Y H, Ke T, et al. Code tracking performance analysis of GNSS signal in the presence of CW interference. Sign Proc, 2011, 91: 970–987

    Article  MATH  Google Scholar 

  23. Jang J, Paonni M, Eissfeller B. CW interference effects on tracking performance of GNSS receivers. IEEE Trans Aero Electron Syst, 2012, 48: 243–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Wang, Y., Jiang, L. et al. CW interference mitigation in GNSS receiver based on frequency-locked loop. Sci. China Inf. Sci. 59, 082201 (2016). https://doi.org/10.1007/s11432-015-0763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-0763-9

Keywords

Navigation