Skip to main content
Log in

Compressed sensing digital receiver and orthogonal reconstructing algorithm for wideband ISAR radar

基于压缩感知的宽带ISAR雷达数字接收机与正交重构算法

  • Research Paper
  • Special Focus on High-Speed Signal Processing
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a novel design of intermediate frequency (IF) digital receiver for wideband inverse synthetic aperture radar (ISAR) based on compressed sensing (CS). For the convenience in engineering application, we use random sampling in the digital receiver and make it possible to digitize the wideband IF signal using a commercial off-the-shelf analog-to-digital converter with sub-Nyquist sample rate. Besides, a novel basis for the sparse representation of real-valued ISAR radar echoes is built in this paper, and an orthogonal CS reconstructing algorithm is proposed based on this. Using our proposed method, the complex-valued range profile of target can be directly reconstructed from the subsampled real raw echo. The phase information of target range profile, which is very important for the coherent processing in ISAR imaging, is well reserved during the reconstruction. As a result, the down converter and matched filter, which are essential in conventional radar receiver, can be eliminated in our CS digital receiver. A series of simulation validates our design and demonstrates the feasibility of the sub-Nyquist sampling. The simulation results of ISAR imaging verify the validity and superiority of the proposed orthogonal reconstructing method.

摘要

创新点

本文基于压缩感知理论针对宽带ISAR成像雷达提出了一种全新架构的数字接收机。 本系统采用利于工程实现的随机采样方法, 利用现有ADC芯片实现了对雷达回波信号低于奈奎斯特速率的欠采样。 此外, 本文提出一种正交重构算法, 能够从欠采样的实信号中重构复数的雷达目标一维距离像, 并在重构中较好的保留了回波的相位信息, 便于ISAR图像处理。 因此, 正交重构能够完美替代常规数字接收机中的数字下变频器和匹配滤波器, 极大简化接收机设计。 针对本文提出的设计和重构算法, 论文开展了一系列仿真实验, 实验结果证明了系统的可行性和正交重构算法的可靠性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitola J. The software radio architecture. IEEE Commun Mag, 1995, 33: 26–38

    Article  Google Scholar 

  2. Wu Y, Li J. The design of digital radar receiver. IEEE Aes Mag, 1998, 35: 35–41

    Google Scholar 

  3. Hasan S M, Lutfi A. A low-cost high-performance digtial radar test bed. IEEE Trans Instrum Meas, 2013, 62: 221–229

    Article  Google Scholar 

  4. Pekau H, Haslett J W. A comparison of analog front end architectures for digital receivers. In: Canadian Conference on Electrical and Computer Engineering, Saskatoon, 2005. 1073–1077

    Google Scholar 

  5. Vaughan R G, Scott N L, White D R. The theory of bandpass sampling. IEEE Transn Signal Process, 1991, 39: 1973–1991

    Article  Google Scholar 

  6. Wiley C A. Synthetic aperture radars. IEEE Trans Aerosp Electron Syst. 1985, 21: 440–443

    Article  Google Scholar 

  7. Zhou F, Bai X R, Xing M D, et al. Analysis of wide-angle radar imaging. IET Proc-Radar Sonar Navig, 2011, 5: 449–457

    Article  Google Scholar 

  8. Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  9. Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans Inf Theory, 2010, 56: 520–544

    Article  MathSciNet  Google Scholar 

  10. Zhang B C, Hong W, Wu Y R. Sparse microwave imaging: principles and applications. Sci China Inf Sci, 2012, 55: 1722–1754

    Article  MATH  MathSciNet  Google Scholar 

  11. Baraniuk R, Steeghs P. Compressive radar imaging. In: Proceedings of IEEE Radar Conference, Boston, 2007. 128–133

    Google Scholar 

  12. Potter L C, Ertin E, Parker J T. Sparsity and compressed sensing in radar imaging. Proc IEEE, 2010, 98: 1006–1020

    Article  Google Scholar 

  13. Wang H X, Liang Y, Xing M D, et al. ISAR imaging via sparse frequency-stepped chirp signal. Sci China Inf Sci, 2012, 55: 877–888

    Article  MathSciNet  Google Scholar 

  14. Bai X R, Zhou F, Xing M D, et al. High-resolution radar imaging of air targets from sparse azimuth data. IEEE Trans Aerosp Elect Syst, 2012, 48: 1643–1655

    Article  Google Scholar 

  15. Ender J H G. On compressive sensing applied to radar. Signal Process, 2010, 90: 1402–1414

    Article  MATH  Google Scholar 

  16. Zhu F, Zhang Q, Luo Y, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal. Sci China Inf Sci, 2012, 55: 1910–1924

    Article  MATH  MathSciNet  Google Scholar 

  17. Wu C, Liu K Y, Jin M. Modeling and a correlation algorithm for spaceborne SAR signals. IEEE Trans Aerosp Electron Syst, 1982, 18: 563–574

    Article  Google Scholar 

  18. Martin K W. Complex signal processing is not complex. IEEE Trans Circ Syst, 2004, 51: 1823–1836

    Article  Google Scholar 

  19. Fudge J, Legako M, Sehreiner C. An approach to efficient wideband digital down conversion. In: Proceedings of International Conference on Signal Processing Applications and Technology, Toronto, 1998. 713–717

    Google Scholar 

  20. Hentschel T, Henker M, Fettweis G. The digital front-end of software radio terminals. IEEE Pers Commun, 1999, 6: 40–46

    Article  Google Scholar 

  21. Lohning M, Hentschel T, Fettweis G. Digital down conversion in software radio terminals. In: Proceedings of 10th European Signal Processing Conference, Tampere, 2000. 1517–1520

    Google Scholar 

  22. Jantzi S A, Martin K, Sedra A S. Quadrature bandpass sigma-delta modulation for digital radio. IEEE J Solid-State Circuits, 1997, 32: 1935–1949

    Article  Google Scholar 

  23. Lei J. Generalized reconstruction algorithm for compressed sensing. Comput Elec Eng, 2011, 37: 570–588

    Article  MATH  Google Scholar 

  24. Mileounis G, Babadi B, Kalouptsidis N, et al. An adaptive greedy algorithm with application to nonlinear communications. IEEE Trans Signal Process, 2010, 58: 2998–3007

    Article  MathSciNet  Google Scholar 

  25. Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56: 2346–2356

    Article  MathSciNet  Google Scholar 

  26. Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm. IEEE Trans Signal Process, 2009, 57: 289–301

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingKai Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Liu, Y., Fan, L. et al. Compressed sensing digital receiver and orthogonal reconstructing algorithm for wideband ISAR radar. Sci. China Inf. Sci. 58, 1–10 (2015). https://doi.org/10.1007/s11432-014-5240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5240-3

Keywords

关键词

Navigation