Skip to main content
Log in

Lagrangian coherent structures and their heat-transport mechanism in the turbulent Rayleigh-Bénard convection

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Lagrangian coherent structures (LCSs) and their heat-transport mechanism in turbulent Rayleigh-Bénard (RB) convection. Direct numerical simulations (DNS) are performed in a closed square cell with Rayleigh numbers (Ra) ranging from 106 to 109 and Prandtl (Pr) number fixed at Pr = 0.7. First, our results show the power-law relationship between Nusselt number (Nu) and Ra, Nu = 0.99Ra0.30±0.02, confirming the results from previous studies. To gain insights into the material transport, LCSs are extracted using the finite-time Lyapunov exponent (FTLE) method. Interestingly, lobe structures are widely present, and we elucidate their role in transporting heat from the corner rolls to large-scale circulation. Next, the relationships between LCSs and thermal plumes are examined, and we identify two behaviors of thermal plumes: first, most plumes transport along the LCSs; second, few plumes are exposed to the bulk and subsequently mix with the turbulent background. Furthermore, we quantify the heat flux along the LCSs, which contributes to about 85% of the total flux regardless of Ra. This suggests that LCSs play a significant role in heat transport. Finally, the viscous (thermal) dissipation rate along the LCSs is quantified, which is larger than 80% (60%) of the total value, suggesting that LCSs are responsible for the large viscous and thermal dissipations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevens B. Atmospheric moist convection. Annu Rev Earth Planet Sci, 2005, 33: 605–643

    Article  MathSciNet  Google Scholar 

  2. Thorpe S A. Recent developments in the study of ocean turbulence. Annu Rev Earth Planet Sci, 2004, 32: 91–109

    Article  Google Scholar 

  3. Incropera F P. Convection heat transfer in electronic equipment cooling. J Heat Transfer, 1988, 110: 1097–1111

    Article  Google Scholar 

  4. Chillà F, Schumacher J. New perspectives in turbulent Rayleigh-Bénard convection. Eur Phys J E, 2012, 35: 1–25

    Article  Google Scholar 

  5. Ahlers G, Grossmann S, Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev Mod Phys, 2009, 81: 503–537

    Article  Google Scholar 

  6. Lohse D, Xia K Q. Small-scale properties of turbulent Rayleigh-Bénard convection. Annu Rev Fluid Mech, 2010, 42: 335–364

    Article  MATH  Google Scholar 

  7. Ahlers G, Funfschilling D, Bodenschatz E. Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015. New J Phys, 2009, 11: 123001

    Article  Google Scholar 

  8. Lam S, Shang X D, Zhou S Q, et al. Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection. Phys Rev E, 2002, 65: 066306

    Article  Google Scholar 

  9. Chillá F, Ciliberto S, Innocenti C, et al. Boundary layer and scaling properties in turbulent thermal convection, Il Nuovo Cimento D, 1993, 15: 1229–1249

    Article  Google Scholar 

  10. Shishkina O, Wagner C. Local heat fluxes in turbulent Rayleigh-Bénard convection. Phys Fluids, 2007, 19: 085107

    Article  MATH  Google Scholar 

  11. Stevens R J A M, Lohse D, Verzicco R. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J Fluid Mech, 2011, 688: 31–43

    Article  MATH  Google Scholar 

  12. Schmalzl J, Breuer M, Hansen U. On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys Lett, 2004, 67: 390–396

    Article  Google Scholar 

  13. Malkus W V R. The heat transport and spectrum of thermal turbulence. Proc R Soc Lond A, 1954, 225: 196–212

    Article  MathSciNet  MATH  Google Scholar 

  14. Grossmann S, Lohse D. Scaling in thermal convection: A unifying theory. J Fluid Mech, 2000, 407: 27–56

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang Y Z, Sun C, Bao Y, et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection. J Fluid Mech, 2018, 836: R2

    Article  MATH  Google Scholar 

  16. Zhu X, Jiang L F, Zhou Q, et al. Turbulent Rayleigh-Bénard convection in an annular cell. J Fluid Mech, 2019, 869: R5

    Article  MATH  Google Scholar 

  17. Yang J L, Zhang Y Z, Jin T C, et al. The Pr-dependence of the critical roughness height in two-dimensional turbulent Rayleigh-Bénard convection. J Fluid Mech, 2021, 911: A52

    Article  MATH  Google Scholar 

  18. Dong D L, Wang B F, Dong Y H, et al. Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection. Phys Fluids, 2020, 32: 045114

    Article  Google Scholar 

  19. Kadanoff L P. Turbulent heat flow: Structures and scaling. Phys Today, 2001, 54: 34–39

    Article  Google Scholar 

  20. Krishnamurti R Howard L N. Large-scale flow generation in turbulent convection. Proc Natl Acad Sci USA, 1981, 78: 1981–1985

    Article  Google Scholar 

  21. Qiu X L, Tong P. Large-scale velocity structures in turbulent thermal convection. Phys Rev E, 2001, 64: 036304

    Article  Google Scholar 

  22. Xia K Q, Sun C, Zhou S Q. Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys Rev E, 2003, 68: 066303

    Article  Google Scholar 

  23. Xi H D, Lam S, Xia K Q. From laminar plumes to organized flows: The onset of large-scale circulation in turbulent thermal convection. J Fluid Mech, 1999, 503: 47–56

    Article  MATH  Google Scholar 

  24. Sun C, Xi H D, Xia K Q. Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys Rev Lett, 2005, 95: 074502

    Article  Google Scholar 

  25. Xi H D, Zhou Q, Xia K Q. Azimuthal motion of the mean wind in turbulent thermal convection. Phys Rev E, 2006, 73: 056312

    Article  Google Scholar 

  26. Brown E, Ahlers G. Rotations and cessations of the large-scale circulation in turbulent Rayleigh-Bénard convection. J Fluid Mech, 2006, 568: 351–386

    Article  MATH  Google Scholar 

  27. Hunt J, Wray A, Moin P. Eddies, Streams, and Convergence Zones in Turbulent Flows. Center for Turbulence Research Report CTR-S88, 1988. 193

  28. Bailon-Cuba J, Schumacher J. Low-dimensional model of turbulent Rayleigh-Bénard convection in a Cartesian cell with square domain. Phys Fluids, 2011, 23: 077101

    Article  Google Scholar 

  29. Podvin B, Sergent A. Proper orthogonal decomposition investigation of turbulent Rayleigh-Bénard convection in a rectangular cavity. Phys Fluids, 2012, 24: 105106

    Article  Google Scholar 

  30. Paul S, Verma M K. Proper orthogonal decomposition vs. fourier analysis for extraction of large-scale structures of thermal convection. In: Proceedings of Advances in Computation, Modeling and Control of Transitional and Turbulent Flows. Singapore: World Scientific, 2016. 433–441

    Chapter  Google Scholar 

  31. Schmid P J. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech, 2010, 656: 5–28

    Article  MathSciNet  MATH  Google Scholar 

  32. Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition. Theor Comput Fluid Dyn, 2011, 25: 249–259

    Article  MATH  Google Scholar 

  33. Huang Y X, Zhou Q. Counter-gradient heat transport in two-dimensional turbulent Rayleigh-Bénard convection. J Fluid Mech, 2013, 737: R3

    Article  MATH  Google Scholar 

  34. Green M A, Rowley C W, Haller G. Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech, 2007, 572: 111–120

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma X Y, Tang Z Q, Jiang N. Eulerian and Lagrangian analysis of coherent structures in separated shear flow by time-resolved particle image velocimetry. Phys Fluids, 2020, 32: 065101

    Article  Google Scholar 

  36. Gasteuil Y, Shew W L, Gibert M, et al. Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh-Bénard convection. Phys Rev Lett, 2007, 99: 234302

    Article  Google Scholar 

  37. Hadjighasem A, Farazmand M, Blazevski D, et al. A critical comparison of Lagrangian methods for coherent structure detection. Chaos, 2017, 27: 053104

    Article  MathSciNet  MATH  Google Scholar 

  38. Suara K, Khanarmuei M, Ghosh A, et al. Material and debris transport patterns in Moreton Bay, Australia: The influence of Lagrangian coherent structures. Sci Total Environ, 2020, 721: 137715

    Article  Google Scholar 

  39. Karrasch D, Keller J. A geometric heat-flow theory of Lagrangian coherent structures. J Nonlinear Sci, 2020, 30: 1849–1888

    Article  MathSciNet  MATH  Google Scholar 

  40. Shadden S C, Dabiri J O, Marsden J E. Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids, 2006, 18: 047105

    Article  MathSciNet  MATH  Google Scholar 

  41. Procaccia I. Go with the flow. Nature, 2001, 409: 993–995

    Article  Google Scholar 

  42. Haller G, Yuan G Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 2000, 147: 352–370

    Article  MathSciNet  MATH  Google Scholar 

  43. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15: 1373–1396

    Article  MATH  Google Scholar 

  44. Farazmand M, Haller G Polar rotation angle identifies elliptic islands in unsteady dynamical systems. Physica D, 2016, 315: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  45. Mathur M, Haller G, Peacock T, et al. Uncovering the Lagrangian skeleton of turbulence. Phys Rev Lett, 2007, 98: 144502

    Article  Google Scholar 

  46. Haller G, Sapsis T. Lagrangian coherent structures and the smallest finite-time Lyapunov exponent. Chaos, 2011, 21: 023115

    Article  MathSciNet  MATH  Google Scholar 

  47. Peacock T, Haller G. Lagrangian coherent structures: The hidden skeleton of fluid flows. Phys Today, 2013, 66: 41–47

    Article  Google Scholar 

  48. Haller G Lagrangian coherent structures. Annu Rev Fluid Mech, 2015, 47: 137–162

    Article  MathSciNet  Google Scholar 

  49. Haller G Lagrangian coherent structures from approximate velocity data. Phys Fluids, 2002, 14: 1851–1861

    Article  MathSciNet  MATH  Google Scholar 

  50. Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 2005, 212: 271–304

    Article  MathSciNet  MATH  Google Scholar 

  51. He G S, Pan C, Feng L H, et al. Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J Fluid Mech, 2016, 792: 274–306

    Article  MathSciNet  MATH  Google Scholar 

  52. Li S, Jiang N, Yang S Q, et al. Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE). Chin Phys B, 2018, 27: 104701

    Article  Google Scholar 

  53. Schneide C, Stahn M, Pandey A, et al. Lagrangian coherent sets in turbulent Rayleigh-Bénard convection. Phys Rev E, 2019, 100: 053103

    Article  MathSciNet  Google Scholar 

  54. du Puits R, Li L, Resagk C, et al. Turbulent boundary layer in high Rayleigh number convection in air. Phys Rev Lett, 2014, 112: 124301

    Article  Google Scholar 

  55. Zhang Y, Zhou Q, Sun C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh-Bénard convection. J Fluid Mech, 2017, 814: 165–184

    Article  MathSciNet  MATH  Google Scholar 

  56. Bao Y, Chen J, Liu B F, et al. Enhanced heat transport in partitioned thermal convection. J Fluid Mech, 2015, 784: R5

    Article  MathSciNet  MATH  Google Scholar 

  57. Chen J, Bao Y, Yin Z X, et al. Theoretical and numerical study of enhanced heat transfer in partitioned thermal convection. Int J Heat Mass Transfer, 2017, 115: 556–569

    Article  Google Scholar 

  58. Zhang Y Z, Xia S N, Dong Y H, et al. An efficient parallel algorithm for DNS of buoyancy-driven turbulent flows. J Hydrodyn, 2019, 31: 1159–1169

    Article  Google Scholar 

  59. Sugiyama K, Ni R Stevens R J A M, et al. Flow reversals in thermally driven turbulence. Phys Rev Lett, 2010, 105: 034503

    Article  Google Scholar 

  60. Zhang Y, Huang Y X, Jiang N, et al. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection. Phys Rev E, 2017, 96: 023105

    Article  Google Scholar 

  61. Wang B F, Zhou Q, Sun C. Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci Adv, 2020, 6: eaaz8239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiMing Lu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11732010, 92052201, 12072185, 91952102, 12032016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Shen, J., Zhang, Y. et al. Lagrangian coherent structures and their heat-transport mechanism in the turbulent Rayleigh-Bénard convection. Sci. China Technol. Sci. 65, 966–976 (2022). https://doi.org/10.1007/s11431-021-1970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1970-8

Keywords

Navigation