Skip to main content
Log in

Large-scale multirole Zn(II) programmed synthesis of ultrathin hierarchically porous carbon nanosheets

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

ZIF-derived carbon structures are considered as desired electrode materials for supercapacitors due to their high surface area, high conductivity, and porous structure. However, the most reported ratio of 2-methylimidazole and Zn(II) is 4:1 to 20:1, which limits commercial applications due to the increasing cost. In this paper, a multirole Zn(II)-assisted method is presented from Zn(II) solution, ZnO, ZnO/ZIF-8 core-shell nanostructure, to 3D hierarchical micro-meso-macroporous carbon structures with a 1:1 ratio of 2-methylimidazole and Zn(II). The hierarchically porous carbon has a high surface area of 1800 m2 g−1 due to the synergistic effect of multirole Zn(II). The unique carbon-based half-cell delivers the specific capacitances of 377 and 221 F g−1 at the current densities of 1.0 and 50 A g−1, respectively. As a 2.5 V symmetrical supercapacitor, the device reveals a high double-layer capacitance of 24.4 F g−1, a power density of 62.5 kW kg−1, and more than 85.8% capacitance can be retained over 10000 cycles at 10 A g−1. More importantly, the low-cost hierarchically porous carbon could be easily produced on a large scale and almost all chemicals can be reused in the sustainable method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu L, Niu Z, Chen J. Unconventional supercapacitors from nano-carbon-based electrode materials to device configurations. Chem Soc Rev, 2016, 45: 4340–4363

    Article  CAS  PubMed  Google Scholar 

  2. Chen K F, Xue D F. Rare earth and transitional metal colloidal supercapacitors. Sci China Tech Sci, 2015, 1768–1778

  3. Zhou K, Fan X J, Wei X F, et al. The strategies of advanced cathode composites for lithium-sulfur batteries. Sci China Tech Sci, 2017, 60: 175–185

    Article  CAS  Google Scholar 

  4. Meng F, Li Q, Zheng L. Flexible fiber-shaped supercapacitors: Design, fabrication, and multi-functionalities. Energy Storage Mater, 2017, 8: 85–109

    Article  Google Scholar 

  5. Zhang Q Z, Zhang D, Miao Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials. Small, 2018, 14: 1702883

    Article  Google Scholar 

  6. Zhang G, Chen Y, Chen Y, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater Res Bull, 2018, 102: 391–398

    Article  CAS  Google Scholar 

  7. Wang Y, Fugetsu B, Wang Z, et al. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci Rep, 2017, 7: 40259

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Meng F, Zheng L, Luo S, et al. A highly torsionable fiber-shaped supercapacitor. J Mater Chem A, 2017, 5: 4397–4403

    Article  CAS  Google Scholar 

  9. Meng F, Zhao J, Ye Y, et al. Carbon nanotube fibers for electrochemical applications: Effect of enhanced interfaces by an acid treatment. Nanoscale, 2012, 4: 7464–7468

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Huang Y B, Liang J, Wang X S, et al. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem Soc Rev, 2017, 46: 126–157

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Wang X, Zhao G, et al. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev, 2018, 47: 2322–2356

    Article  CAS  PubMed  Google Scholar 

  12. Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res, 2016, 49: 2796–2806

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Xie L H, Li J R, et al. CO2 capture and separations using MOFs: Computational and experimental studies. Chem Rev, 2017, 117: 9674–9754

    Article  CAS  PubMed  Google Scholar 

  14. Yuan S, Feng L, Wang K, et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv Mater, 2018, 30: 1704303

    Article  Google Scholar 

  15. Chen L F, Lu Y, Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance super-capacitors. Energy Environ Sci, 2017, 10: 1777–1783

    Article  CAS  Google Scholar 

  16. Li W, Hu S, Luo X, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater, 2017, 29: 1605820

    Article  Google Scholar 

  17. Zhang J, Huang M, Xi B, et al. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv Energy Mater, 2018, 8: 1701330

    Article  Google Scholar 

  18. Abdi J, Vossoughi M, Mahmoodi N M, et al. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J, 2017, 326: 1145–1158

    Article  CAS  Google Scholar 

  19. Mohamedali M, Ibrahim H, Henni A. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chem Eng J, 2018, 334: 817–828

    Article  CAS  Google Scholar 

  20. Liu Q, Liu X, Zheng L, et al. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew Chem Int Ed, 2018, 57: 1204–1208

    Article  CAS  Google Scholar 

  21. Liu S, Chen F, Li S, et al. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Appl Catal B-Environ, 2017, 211: 1–10

    Article  CAS  Google Scholar 

  22. Pan Y, Sun K, Liu S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc, 2018, 140: 2610–2618

    Article  CAS  PubMed  Google Scholar 

  23. Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359: 206–210

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Lupica-Spagnolo L, Ward D J, Marie J J, et al. Pollen-like ZIF-8 colloidosomes via emulsion templating and etching. Chem Commun, 2018, 54: 8506–8509

    Article  CAS  Google Scholar 

  25. Cao X M, Han Z B. Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chem Commun, 2019, 55: 1746–1749

    Article  CAS  Google Scholar 

  26. Li X, Hao C, Tang B, et al. Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites. Nanoscale, 2017, 9: 2178–2187

    Article  CAS  PubMed  Google Scholar 

  27. Wan L, Shamsaei E, Easton C D, et al. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon, 2017, 121: 330–336

    Article  CAS  Google Scholar 

  28. Afzal A, Abuilaiwi F A, Habib A, et al. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges. J Power Sources, 2017, 352: 174–186

    Article  CAS  Google Scholar 

  29. Chee W K, Lim H N, Zainal Z, et al. Flexible graphene-based supercapacitors: A review. J Phys Chem C, 2016, 120: 4153–4172

    Article  CAS  Google Scholar 

  30. Wang J, Luo X, Young C, et al. A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollow carbonaceous materials. Chem Mater, 2018, 30: 4401–4408

    Article  CAS  Google Scholar 

  31. Kuang Q, Xu T, Xie Z X, et al. Versatile fabrication of aligned SnO2 nanotube arrays by using various ZnO arrays as sacrificial templates. J Mater Chem, 2009, 19: 1019–1023

    Article  CAS  Google Scholar 

  32. Zhan W, Kuang Q, Zhou J, et al. Semiconductor@metal-organic framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc, 2013, 135: 1926–1933

    Article  CAS  PubMed  Google Scholar 

  33. Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem, 2006, 118: 1587–1589

    Article  ADS  Google Scholar 

  34. Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332: 1537–1541

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350: 1508–1513

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Jin Z Y, Lu A H, Xu Y Y, et al. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv Mater, 2014, 26: 3700–3705

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Tang J, Ding B, et al. Self-template-directed metal-organic frameworks network and the derived honeycomb-like carbon flakes via confinement pyrolysis. Small, 2018, 14: 1704461

    Article  Google Scholar 

  38. Chen L F, Zhang X D, Liang H W, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 2012, 6: 7092–7102

    Article  CAS  PubMed  Google Scholar 

  39. Wickramaratne N P, Xu J, Wang M, et al. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem Mater, 2014, 26: 2820–2828

    Article  CAS  Google Scholar 

  40. Indra A, Menezes P W, Kailasam K, et al. Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): What is the nature of the active species? Chem Commun, 2016, 52: 104–107

    Article  CAS  Google Scholar 

  41. Liu Y, Yu L, Ong C N, et al. Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Res, 2016, 9: 1983–1993

    Article  CAS  Google Scholar 

  42. Jiang M, Cao X, Zhu D, et al. Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim Acta, 2016, 196: 699–707

    Article  CAS  Google Scholar 

  43. Chabot V, Higgins D, Yu A, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ Sci, 2014, 7: 1564–1596

    Article  CAS  Google Scholar 

  44. Lin Z, Zeng Z, Gui X, et al. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv Energy Mater, 2016, 6: 1600554

    Article  Google Scholar 

  45. Wei S, Zhang H, Huang Y, et al. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ Sci, 2011, 4: 736–740

    Article  CAS  Google Scholar 

  46. Liu R, Wan L, Liu S, et al. An interface-induced Co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv Funct Mater, 2015, 25: 526–533

    Article  CAS  Google Scholar 

  47. Xiao K, Ding L X, Liu G, et al. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state super-capacitors. Adv Mater, 2016, 28: 5997–6002

    Article  CAS  PubMed  Google Scholar 

  48. Salunkhe R R, Young C, Tang J, et al. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun, 2016, 52: 4764–4767

    Article  CAS  Google Scholar 

  49. Chaudhari N K, Song M Y, Yu J S. Heteroatom-doped highly porous carbon from human urine. Sci Rep, 2014, 4: 5221

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Yang W, Yang W, Ding F, et al. Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate super-capacitors. Carbon, 2017, 111: 419–427

    Article  CAS  Google Scholar 

  51. Ferrero G A, Fuertes A B, Sevilla M. N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J Mater Chem A, 2015, 3: 2914–2923

    Article  CAS  Google Scholar 

  52. Zhang D, Zhao J, Feng C, et al. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors. J Power Sources, 2017, 324: 363–370

    Article  Google Scholar 

  53. Sevilla M, Fuertes A B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano, 2014, 8: 5069–5078

    Article  CAS  PubMed  Google Scholar 

  54. Yao Y, Liu P, Li X, et al. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors. Dalton Trans, 2018, 47: 7316–7326

    Article  CAS  PubMed  Google Scholar 

  55. Salunkhe R R, Kamachi Y, Torad N L, et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A, 2014, 2: 19848–19854

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LianXi Zheng or JieHua Liu.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Meng, F., Wei, X. et al. Large-scale multirole Zn(II) programmed synthesis of ultrathin hierarchically porous carbon nanosheets. Sci. China Technol. Sci. 63, 1730–1738 (2020). https://doi.org/10.1007/s11431-019-1510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1510-0

Keywords

Navigation