Skip to main content
Log in

Large lattice mismatch induced perpendicular magnetic anisotropy and perpendicular exchange bias in CoPt/FeMn bilayer films

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Perpendicular magnetic anisotropy and perpendicular exchange bias of CoPt/FeMn bilayers fabricated by dc magnetron sputtering were investigated in this work. Magnetic anisotropy, showing strong dependence on thickness of CoPt layer, changes from perpendicular magnetic anisotropy (PMA) into in-plane magnetic anisotropy when CoPt layer is thicker than 4.5 nm. The evolution of internal stress with thickness, from tensile to compressive, has been analyzed by sin2ψ method using an equal biaxial stress model. Distinctive perpendicular exchange bias (PEB) has been successfully established due to PMA of CoPt and out-of-plane spin component of 3Q-spin-structured FeMn. FeMn thickness dependence of exchange bias field has been systematically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phuoc N N, Suzuki T. Perpendicular exchange bias mechanism in FePt/FeMn multilayers. J Appl Phys, 2007, 101: 09E501

    Article  Google Scholar 

  2. van den Brink A, Vermijs G, Solignac A, et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat Commun, 2016, 7: 10854

    Article  Google Scholar 

  3. Zhang W, Han W, Yang S H, et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci Adv, 2016, 2: e1600759

    Article  Google Scholar 

  4. Ma X, Yu G, Razavi S A, et al. Dzyaloshinskii-Moriya interaction across an antiferromagnet-ferromagnet interface. Phys Rev Lett, 2017, 119: 027202

    Article  Google Scholar 

  5. An H, Ando K, Nakamura Y, et al. Formation and perpendicular magnetic coupling of A1 and L10 CoPt in CoPt/TiN films on glass substrate. IEEE Trans Magn, 2018, 55: 1–4

    Article  Google Scholar 

  6. Liu D, Liu X M, Liu G Q, et al. Phase stability and magnetic performance of nanocrystalline Sm-Co supersaturated solid solution. Sci China Tech Sci, 2018, 61: 129–134

    Article  Google Scholar 

  7. Ahn S M, Beach G S D. Crossover between in-plane and perpendicular anisotropy in Ta/CoxFe100-x/MgO films as a function of Co composition. J Appl Phys, 2013, 113: 17C112

    Article  Google Scholar 

  8. Basile F, Poix P. Etude par effect Mössbauer et mesures magnétiques de la solution solide Fe2−2xMg1+xSnxO4. Phys Stat Sol (a), 1976, 35: 153–164

    Article  Google Scholar 

  9. Lisfi A, Williams C M, Nguyen L T, et al. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films. Phys Rev B, 2007, 76: 054405

    Article  Google Scholar 

  10. Niizeki T, Utsumi Y, Aoyama R, et al. Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3−2xO4 (001) (x = 0.75, 1.0) thin films. Appl Phys Lett, 2013, 103: 162407

    Article  Google Scholar 

  11. Numata Y, Itabashi A, Ohtake M, et al. Structural characterization of FePd, FePt, and CoPt alloy thin filmsepitaxially groown on (001) surface of different single-crystal materials. IEEE Trans Magn, 2013, 50: 1–4

    Article  Google Scholar 

  12. Phuoc N N, Chen H Y, Ong C K. Effect of antiferromagnetic thickness on thermal stability of static and dynamic magnetization of NiFe/FeMn multilayers. J Appl Phys, 2013, 113: 063913

    Article  Google Scholar 

  13. Martínez-Boubeta C, Botana A S, Pardo V, et al. Heteroepitaxial growth of MgO(111) thin films on Al2O3 (0001): Evidence of a wurtzite to rocksalt transformation. Phys Rev B, 2012, 86: 041407

    Article  Google Scholar 

  14. Yu Y, Shi J, Nakamura Y. Thickness-dependent perpendicular magnetic anisotropy of CoPt top layer on CoPt/AlN multilayer. IEEE Trans Magn, 2010, 46: 1663–1666

    Article  Google Scholar 

  15. Pan C, Gao T, Harumoto T, et al. Asymmetry in magnetic behavior caused by superposition of unidirectional and four-fold magnetic anisotropies in CoPt/FeMn bilayers. Appl Surf Sci, 2019, 480: 148–153

    Article  Google Scholar 

  16. Guo L, Wang Y, Wang J, et al. Magnetoelastically induced perpendicular magnetic anisotropy and perpendicular exchange bias of CoO/CoPt multilayer films. J Magn Magn Mater, 2015, 394: 349–353

    Article  Google Scholar 

  17. Nogués J, Schuller I K. Exchange bias. J Magn Magn Mater, 1999, 192: 203–232

    Article  Google Scholar 

  18. Zhao X P, Lu J, Mao S W, et al. Spontaneous perpendicular exchange bias effect in L 10-MnGa/FeMn bilayers grown by molecular-beam epitaxy. Appl Phys Lett, 2018, 112: 042403

    Article  Google Scholar 

  19. Lenz K, Zander S, Kuch W. Magnetic proximity effects in antiferromagnet/ferromagnet bilayers: The impact on the Néel temperature. Phys Rev Lett, 2007, 98: 237201

    Article  Google Scholar 

  20. Xi H, White R M, Mao S, et al. Low-frequency dynamic hysteresis in exchange-coupled Ni81Fe19/Ir22Mn78 bilayers. Phys Rev B, 2001, 64: 184416

    Article  Google Scholar 

  21. Bolon B T, Haugen M A, Abin-Fuentes A, et al. Multiple antiferromagnet/ferromagnet interfaces as a probe of grain-size-dependent exchange bias in polycrystalline Co/Fe50Mn50. J Magn Magn Mater, 2007, 309: 54–63

    Article  Google Scholar 

  22. Chang H W, Yuan F T, Chiang M T, et al. Effect of Ta underlayer on magnetic properties of FeMn/NiFe films. Surf Coatings Tech, 2016, 303: 148–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Gao, T., Itogawa, N. et al. Large lattice mismatch induced perpendicular magnetic anisotropy and perpendicular exchange bias in CoPt/FeMn bilayer films. Sci. China Technol. Sci. 62, 2009–2013 (2019). https://doi.org/10.1007/s11431-019-1433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1433-0

Keywords

Navigation