Skip to main content
Log in

Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

True proportional navigation (TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering target with a specific acceleration had been analyzed before. However, the obtained results are not suitable for the realistic exoatmospheric interception scenario, since the target may maneuver along an arbitrary direction with an arbitrary but upper-bounded acceleration in the three-dimensional (3D) space, which is the so-called “true-arbitrarily maneuvering target” in this paper. With the help of the line-of-sight (LOS) rotation coordinate system, the performance of 3D TPN against the true-arbitrarily maneuvering target is thoroughly analyzed using the Lyapunov-like approach. The upper-bound of the 3D LOS rate is obtained, and so is that of the commanded acceleration of 3D TPN. After that, the capture region of 3D TPN is presented on the initial relative velocity plane. The nonlinear 3D relative kinematics between the interceptor and the target is taken into full account. Finally, the new theoretical findings are demonstrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shneydor N A. Missile Guidance and Pursuit—Kinematics, Dynamics and Control. Chichester: Horwood Publishing, 1998

    Book  Google Scholar 

  2. Yuan L C L. Homing and navigational courses of automatic targetseeking devices. J Appl Phys, 1948, 19: 1122–1128

    Article  Google Scholar 

  3. Adler F P. Missile guidance by three-dimensional proportional navigation. J Appl Phys, 1956, 27: 500–507

    Article  MATH  Google Scholar 

  4. Guelman M. A qualitative study of proportional navigation. IEEE Trans Aerosp Electron Syst, 1971, AES-7: 637–643

    Article  Google Scholar 

  5. Guelman M. Proportional navigation with a maneuvering target. IEEE Trans Aerosp Electron Syst, 1972, AES-8: 364–371

    Article  Google Scholar 

  6. Guelman M. Missile acceleration in proportional navigation. IEEE Trans Aerosp Electron Syst, 1973, AES-9: 462–463

    Article  Google Scholar 

  7. Becker K. Closed-form solution of pure proportional navigation. IEEE Trans Aerosp Electron Syst, 1990, 26: 526–533

    Article  Google Scholar 

  8. Ghawghawe S N, Ghose D. Pure proportional navigation against timevarying target manoeuvres. IEEE Trans Aerosp Electron Syst, 1996, 32: 1336–1347

    Article  Google Scholar 

  9. Ha I J, Hur J S, Ko M S, et al. Performance analysis of PNG laws for randomly maneuvering targets. IEEE Trans Aerosp Electron Syst, 1990, 26: 713–721

    Article  Google Scholar 

  10. Song S T, Ha I J. A Lyapunov-like approach to performance analysis of 3-dimensional pure PNG laws. IEEE Trans Aerosp Electron Syst, 1994, 30: 238–248

    Article  Google Scholar 

  11. Oh J H, Ha In J. Capturability of the 3-dimensional pure PNG law. IEEE Trans Aerosp Electron Syst, 1999, 35: 491–503

    Article  Google Scholar 

  12. Tyan F. Capture region of a 3D PPN guidance law for intercepting high-speed targets. Asian J Control, 2012, 14: 1215–1226

    Article  MathSciNet  MATH  Google Scholar 

  13. Prasanna H M, Ghose D. Retro-proportional-navigation: A new guidance law for interception of high speed targets. J Guidance Control Dyn, 2012, 35: 377–386

    Article  Google Scholar 

  14. Ghosh S, Ghose D, Raha S. Capturability analysis of a 3-D retro-PN guidance law for higher speed nonmaneuvering targets. IEEE Trans Contr Syst Technol, 2014, 22: 1864–1874

    Article  Google Scholar 

  15. Ghosh S, Ghose D, Raha S. Composite guidance for impact angle control against higher speed targets. J Guidance Control Dyn, 2016, 39: 98–117

    Article  Google Scholar 

  16. Murtaugh S A, Criel H E. Fundamentals of proportional navigation. IEEE Spectr, 1966, 3: 75–85

    Article  Google Scholar 

  17. Guelman M. The closed-form solution of true proportional navigation. IEEE Trans Aerosp Electron Syst, 1976, AES-12: 472–482

    Article  MathSciNet  Google Scholar 

  18. Yang C D, Yang C C. Analytical solution of 3D true proportional navigation. IEEE Trans Aerosp Electron Syst, 1996, 32: 1509–1522

    Article  Google Scholar 

  19. Dhar A, Ghose D. Capture region for a realistic TPN guidance law. IEEE Trans Aerosp Electron Syst, 1993, 29: 995–1003

    Article  Google Scholar 

  20. Ghose D. True proportional navigation with maneuvering target. IEEE Trans Aerosp Electron Syst, 1994, 30: 229–237

    Article  Google Scholar 

  21. Yuan P J, Chern J S. Solutions of true proportional navigation for maneuvering and nonmaneuvering targets. J Guidance Control Dyn, 1992, 15: 268–271

    Article  Google Scholar 

  22. Yang C D, Yang C C. Analytical solution of three-dimensional realistic true proportional navigation. J Guidance Control Dyn, 1996, 19: 569–577

    Article  MATH  Google Scholar 

  23. Garai T, Mukhopadhyay S, Ghose D. Approximate closed-form solutions of realistic true proportional navigation guidance using the Adomian decomposition method. P I Mech Eng Part G-J Aerosp Eng, 2009, 223: 189–199

    Article  Google Scholar 

  24. Li K B, Su W S, Chen L. Performance analysis of realistic true proportional navigation against maneuvering targets using Lyapunov-like approach. Aerosp Sci Tech, 2017, 69: 333–341

    Article  Google Scholar 

  25. Tyan F. The capture region of a general 3D TPN guidance law for missile and target with limited maneuverability. In: Proceedings of the American Control Conference. Arlington, 2001. 512–517

    Google Scholar 

  26. Tyan F. Unified approach to missile guidance laws: A 3D extension. IEEE Trans Aerosp Electron Syst, 2005, 41: 1178–1199

    Article  Google Scholar 

  27. Tyan F. Capture region of a GIPN guidance law for missile and target with bounded maneuverability. IEEE Trans Aerosp Electron Syst, 2011, 47: 201–213

    Article  Google Scholar 

  28. Li K B, Zhang T T, Chen L. Ideal proportional navigation for exoatmospheric interception. Chin J Aeronautics, 2013, 26: 976–985

    Article  Google Scholar 

  29. Su W S, Li K B, Chen L. Coverage-based cooperative guidance strategy against highly maneuvering target. Aerosp Sci Tech, 2017, 71: 147–155

    Article  Google Scholar 

  30. Cao L, Chen X Q. Input-output linearization minimum sliding-mode error feedback control for spacecraft formation with large perturbations. P I Mech Eng Part G-J Aerosp Eng, 2015, 229: 352–368

    Google Scholar 

  31. Cao L, Chen X Q, Sheng T. The design of nonsingular terminal sliding-mode feedback controller based on minimum sliding-mode error. P I Mech Eng Part G-J Aerosp Eng, 2014, 228: 1540–1561

    Google Scholar 

  32. Shtessel Y B, Tournes C H. Integrated higher-order sliding mode guidance and autopilot for dual control missiles. J Guidance Control Dyn, 2009, 32: 79–94

    Article  Google Scholar 

  33. Shtessel Y B, Shkolnikov I A, Levant A. Guidance and control of missile interceptor using second-order sliding modes. IEEE Trans Aerosp Electron Syst, 2009, 45: 110–124

    Article  Google Scholar 

  34. Sun S, Zhou D, Hou W T. A guidance law with finite time convergence accounting for autopilot lag. Aerosp Sci Tech, 2013, 25: 132–137

    Article  Google Scholar 

  35. Zhou D, Sun S, Teo K L. Guidance laws with finite time convergence. J Guidance Control Dyn, 2009, 32: 1838–1846

    Article  Google Scholar 

  36. Kumar S R, Rao S, Ghose D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints. J Guidance Control Dyn, 2012, 35: 1230–1246

    Article  Google Scholar 

  37. Kumar S R, Rao S, Ghose D. Nonsingular terminal sliding mode guidance with impact angle constraints. J Guidance Control Dyn, 2014, 37: 1114–1130

    Article  Google Scholar 

  38. Cao L, Chen X. Minimum sliding mode error feedback control for inner-formation satellite system with J 2 and small eccentricity. Sci China Inf Sci, 2016, 59: 072203

    Article  Google Scholar 

  39. Cao L, Zhang Z, Shi J, et al. Optimal sliding model error feedback control for relative motion of Lorentz-augmented spacecraft. P I Mech Eng Part G-J Aerosp Eng, 2018, 232: 664–679

    Google Scholar 

  40. Cao L, Chen Y, Zhang Z, et al. Predictive smooth variable structure filter for attitude synchronization estimation during satellite formation flying. IEEE Trans Aerosp Electron Syst, 2017, 53: 1375–1383

    Article  Google Scholar 

  41. Li K B, Chen L, Bai X Z. Differential geometric modeling of guidance problem for interceptors. Sci China Technol Sci, 2011, 54: 2283–2295

    Article  MATH  Google Scholar 

  42. Li K B, Chen L, Tang G J. Improved differential geometric guidance commands for endoatmospheric interception of high-speed targets. Sci China Tech Sci, 2013, 56: 518–528

    Article  Google Scholar 

  43. Li K B, Chen L, Tang G J. Algebraic solution of differential geometric guidance command and time delay control. Sci China Tech Sci, 2015, 58: 565–573

    Article  Google Scholar 

  44. Chiou Y C, Kuo C Y. Geometric approach to three-dimensional missile guidance problem. J Guidance Control Dyn, 1998, 21: 335–341

    Article  Google Scholar 

  45. Kuo C Y, Chiou Y C. Geometric analysis of missile guidance command. IEE Proc-Control Theor Appl, 2000, 147: 205–211

    Article  Google Scholar 

  46. Kuo C Y, Soetanto D, Ying-Chwan Chiou D. Geometric analysis of flight control command for tactical missile guidance. IEEE Trans Contr Syst Technol, 2001, 9: 234–243

    Article  Google Scholar 

  47. Li C, Jing W, Wang H, et al. Gain-varying guidance algorithm using differential geometric guidance command. IEEE Trans Aerosp Electron Syst, 2010, 46: 725–736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Liang, Y., Su, W. et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception. Sci. China Technol. Sci. 61, 1161–1174 (2018). https://doi.org/10.1007/s11431-018-9310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9310-5

Keywords

Navigation