Skip to main content
Log in

High power linearly polarized fiber laser: Generation, manipulation and application

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Linearly-polarized (LP) fiber lasers, which could find wide potential applications such as coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power LP fiber laser and its applications for the first time. The recent progress in high power LP fiber oscillator, including fiber oscillator based on active fiber, Raman fiber laser and Random distributed feedback fiber laser are summarized. Power scaling of LP fiber laser by using active-fiber based power amplifier, passive-fiber based Raman amplifier, and active/passive fiber based hybrid fiber amplifier has been achieved. Polarization-maintained active fiber based power amplifier and non-polarization-maintained active fiber based power amplifier incorporating active polarization control are specially introduced in detail. High power LP fiber laser with diversified property, such as narrow-linewidth, wavelength-tunable and ultrashort pulse operation, are summarized. Various kinds application of high power LP fiber laser, including beam combining, supercontinumm generation, mid-infrared lasing, structured light field and ultrasonic generation, are presented at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: Current status and future perspectives. J Opt Soc Am B, 2010, 27: B63–63

    Article  Google Scholar 

  2. Zervas M N, Codemard C A. High power fiber lasers: A review. IEEE J Sel Top Quant Electron, 2014, 20: 219–241

    Article  Google Scholar 

  3. Fomin V, Abramov M, Ferin A, et al. 10 kW single mode fiber laser. In: SyTu-1.3, Symposium on High-Power Fiber Lasers, the 14th International Conference, Laser Optics. St. Petersburg, 2010

    Google Scholar 

  4. Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm:fiber laser. In: SPIE Photonics West 2010: LASE Fiber Lasers VII: Technology, Systems, and Applications, Conference 7580. San Francisco, 2010

    Google Scholar 

  5. Jeong Y, Yoo S, Codemard C A, et al. Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power. IEEE J Sel Top Quant Electron, 2007, 13: 573–579

    Article  Google Scholar 

  6. Hemming A, Simakov N, Davidson A, et al. A monolithic cladding pumped holmiumdoped fibre laser. OSA Technical Digest. Optical Society of America, 2013

    Google Scholar 

  7. Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser. Opt Express, 2016, 24: 6758–6768

    Article  Google Scholar 

  8. Xu J, Liu W, Leng J, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW. Opt Lett, 2015, 40: 2973–2976

    Article  Google Scholar 

  9. Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fibre amplified spontaneous emission sources. J Opt, 2015, 17: 045702

    Article  Google Scholar 

  10. Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping. J Opt Soc Am B, 2017, 34: A29

    Article  Google Scholar 

  11. Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt Express, 2008, 16: 13240–13420

    Article  Google Scholar 

  12. Zhu J, Zhou P, Ma Y, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt Express, 2011, 19: 18645

    Article  Google Scholar 

  13. Stolen R H. Polarization effects in fiber Raman and Brillouin lasers. IEEE J Quantum Electron, 1979, 15: 1157–1160

    Article  Google Scholar 

  14. Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W. IEEE J Sel Top Quant Electron, 2007, 13: 546–551

    Article  Google Scholar 

  15. Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In: Proceedings Volume 8961, Fiber Lasers XI: Technology, Systems, and Applications. San Francisco, California, 2014

    Google Scholar 

  16. Guintrand C, Edgecumbe J, Farley K, et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization maintaining fiber amplifier. In: Proceedings of the Lasers and Electro-optics. San Jose, 2014

    Google Scholar 

  17. Haarlammert N, Rekas M, de Vries O, et al. Polarization dependent nonlinear limitations in continuous-wave high power fiber amplifiers. In: Proceedings Volume 8601, Fiber Lasers X: Technology, Systems, and Applications. San Francisco, California, 2013

    Google Scholar 

  18. Belke S, Becker F, Neumann B, et al. Completely monolithic linearly polarized high-power fiber laser oscillator. In: Proceedings Volume 8961, Fiber Lasers XI: Technology, Systems, and Applications. San Francisco, California, 2014

    Google Scholar 

  19. Huang L, Ma P, Tao R, et al. 1.5 kW ytterbium-doped single-transverse- mode, linearly polarized monolithic fiber master oscillator power amplifier. Appl Opt, 2015, 54: 2880–2884

    Article  Google Scholar 

  20. Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt Lett, 2017, 42: 1–4

    Article  Google Scholar 

  21. Wang X, Jin X, Wu W, et al. 310-W single frequency Tm-doped all-fiber MOPA. IEEE Photonic Tech Lett, 2015, 27: 677–680

    Article  Google Scholar 

  22. Yu H, Wang X, Zhang H, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm. J Lightwave Technol, 2016, 34: 4271–4277

    Article  Google Scholar 

  23. Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage allfiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials. In: Proceedings of SPIE, Vol 10083. San Francisco, California, 2017

    Google Scholar 

  24. Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single- frequency, single-mode 608 W thulium fiber amplifier. Opt Lett, 2009, 34: 1204–1206

    Article  Google Scholar 

  25. Robin C, Dajani I, Pulford B. Modal instability-suppressing, singlefrequency photonic crystal fiber amplifier with 811 W output power. Opt Lett, 2014, 39: 666–669

    Article  Google Scholar 

  26. Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. Opt Express, 2013, 21: 29854

    Article  Google Scholar 

  27. Georgiev D, Gapontsev V P, Dronov A G, et al. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm. Opt Express, 2005, 13: 6772–6776

    Article  Google Scholar 

  28. Liu A, Norsen M A, Mead R D. 60-W green output by frequency doubling of a polarized Yb-doped fiber laser. Opt Lett, 2005, 30: 67–69

    Article  Google Scholar 

  29. Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings Volume 9347, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV. San Francisco, California, 2015

    Google Scholar 

  30. Skubchenko S A, Vyatkin M Y, Gapontsev D V. High-power CW linearly polarized all-fiber Raman laser. IEEE Photonic Tech Lett, 2004, 16: 1014–1016

    Article  Google Scholar 

  31. Liu Z, Ma P, Su R, et al. High-power coherent beam polarization combination of fiber lasers: Progress and prospect. J Opt Soc Am B, 2017, 34: A7

    Article  Google Scholar 

  32. Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness. In: Proceedings of SPIE. San Francisco, California, 2013

    Google Scholar 

  33. Shirakawa A, Hiwada K, Hasegawa S, et al. All-fiber linearly-polarized Yb-doped fiber laser yielding 2.2-W green second harmonics. In: Pacific Rim Conference on Lasers and Electro-Optics. Tokyo, 2005

    Google Scholar 

  34. Wikszak E, Thomas J, Klingebiel S, et al. Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings. Opt Lett, 2007, 32: 2756–2758

    Article  Google Scholar 

  35. Jeong Y, Nilsson J, Sahu J K, et al. Single-mode plane-polarized ytterbium- doped large-core fiber laser with 633-W continuous-wave output power. Opt Lett, 2005, 30: 955–957

    Article  Google Scholar 

  36. Liu X, Du S, JZhou, et al. Linearly polarized operation of Yb-doped fiber laser by Brewster’s angle-polished fiber end. Chin Opt Lett, 2010, 8: 184–186

    Article  Google Scholar 

  37. Faucher M, Villeneuve E, Sevigny B, et al. High power monolithically integrated all-fiber laser design using single-chip multimode pumps for high reliability operation. In: Proceedings of SPIE. San Francisco, California, 2008

    Google Scholar 

  38. Shah L, Sims R A, Kadwani P, et al. Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power. Opt Express, 2012, 20: 20558–20563

    Article  Google Scholar 

  39. Xue D, El-Damak A R, Gu X. All-fiber single polarized Yb-doped fiber laser with a high extinction ratio. Opt Commun, 2010, 283: 1059–1061

    Article  Google Scholar 

  40. Manyam UH, Samson B, Khitrov V, et al. Laser fibers designed for single polarization output. OSA Technical Digest. Optical Society of America, 2004

    Google Scholar 

  41. Liu C H, Galvanauskas A, Khitrov V, et al. High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum. Opt Lett, 2006, 31: 17–19

    Article  Google Scholar 

  42. Shirakawa A, Kamijo M, Ota J, et al. Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration. IEEE Photonic Tech Lett, 2007, 19: 1664–1666

    Article  Google Scholar 

  43. Wang J, Hu J, Zhang L, et al. A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm. Opt Express, 2012, 20: 28373–28378

    Article  Google Scholar 

  44. Willis C C C, McKee E, Böswetter P, et al. Highly polarized allfiber thulium laser with femtosecond-laser-written fiber Bragg gratings. Opt Express, 2013, 21: 10467–10474

    Article  Google Scholar 

  45. EL-Damak A R, Jianhua Chang A R, Jian Sun A R, et al. Dual-wavelength, linearly polarized all-fiber laser with high extinction ratio. IEEE Photonic J, 2013, 5: 1501406–1501406

    Article  Google Scholar 

  46. Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys Lett, 2007, 4: 93–102

    Article  Google Scholar 

  47. Zhou P, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges. Laser Phys, 2012, 22: 823–831

    Article  Google Scholar 

  48. Zhang H, Jiang M, Xiao H, et al. High power Yb-doped fiber laser operates at special wavelength. In: Proceedings Volume 8904, International Symposium on Photoelectronic Detection and Imaging 2013: High Power Lasers and Applications. Beijing, China, 2013

    Google Scholar 

  49. Jin X, Du X, Wang X, et al. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. Sci Rep, 2016, 6: 30052

    Article  Google Scholar 

  50. Li Z, Jung Y, daniel J M O, et al. Extreme short wavelength operation (1.65–1.7 μm) of silica-based thulium-doped fiber amplifier. In: Proceedings of the Optical Fiber Communication Conference: Sources and Amplifiers. Optical Society of America, 2015. 22–26

    Chapter  Google Scholar 

  51. Huang L, Ma P, Tao R, et al. Experimental investigation of thermal effects and PCT on FBGs-based linearly polarized fiber laser performance. Opt Express, 2015, 23: 10506

    Article  Google Scholar 

  52. Kablukov S I, Zlobina E A, Podivilov E V, et al. Output spectrum of Yb-doped fiber lasers. Opt Lett, 2012, 37: 2508–2510

    Article  Google Scholar 

  53. Liu W, Xiao H, Wang X, et al. Output spectrum of high-power CW fiber amplifier. In: Proceedings Volume 8904, International Symposium on Photoelectronic Detection and Imaging 2013: High Power Lasers and Applications. Beijing, China, 2013

    Google Scholar 

  54. Liu Wei, Xiao Hu, Wang Xiaolin, et al. Study on output spectral characteristic of Yb-doped fiber lasers. Chin J Laser, 2013, 40: 0902006

    Article  Google Scholar 

  55. Lapointe M, Piché M. Linewidth of high-power fiber lasers. In: Proceedings of SPIE. Quebec, 2009

    Google Scholar 

  56. Sinha S, Langrock C, Digonnet M J, et al. Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator. Opt Lett, 2006, 31: 347–349

    Article  Google Scholar 

  57. Shirakawa A, Ota J, Maruyama H, et al. Linearly-polarized yb-doped fiber laser directly operating at 1178 nm for 589-nm generation. In: Advanced Solid-state Photonics. Vancouver: Optical Society of America, 2006

    Google Scholar 

  58. Jacquemet M, Mugnier A, Le Corre G É Ë, et al. CW PM multiwatts Yb-doped fiber laser directly emitting at long wavelength. IEEE J Sel Top Quant Electron, 2009, 15: 120–128

    Article  Google Scholar 

  59. Huang L, Zhang H, Wang X, et al. Diode-pumped 1178-nm highpower Yb-doped fiber laser operating at 125 °C. IEEE Photonic J, 2016, 8: 1–7

    Google Scholar 

  60. Huang L, Zhang H, Wang X, et al. A high-power LD-pumped linearly polarized Yb-doped fiber laser operating at 1152 nm with 42 GHz narrow linewidth and 18 dB PER. Laser Phys, 2016, 26: 075105

    Article  Google Scholar 

  61. Olausson C B, Falk C I, Lyngsø J K, et al. Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre. Opt Express, 2008, 16: 13657

    Article  Google Scholar 

  62. Kashiwagi M, Takenaga K, Ichii K, et al. 1180 nm Linearly-polarized fiber laser with high slope efficiency employing low-loss ytterbium- doped polarization maintaining solid photonic bandgap fiber. In: Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS). San Jose, CA: IEEE, 2010

    Google Scholar 

  63. Fan X, Chen M, Shirakawa A, et al. 53.6 W, 1178 nm Yb-doped photonic bandgap fiber oscillator. Conference on Lasers and Electro-Optics, 2012. M2N–5N

    Google Scholar 

  64. Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers. J Opt, 2017, 19: 023001

    Article  Google Scholar 

  65. Dianov E M. Advances in Raman fibers. J Lightwave Technol, 2002, 20: 1457–1462

    Article  Google Scholar 

  66. Fortin V, Bernier M, Faucher D, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm. Opt Express, 2012, 20: 19412

    Article  Google Scholar 

  67. Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 15 μm cascaded Raman fiber lasers. Opt Lett, 2013, 38: 2538

    Article  Google Scholar 

  68. Feng Y, Taylor L R, Calia D B. 150 W highly-efficient Raman fiber laser. Opt Express, 2009, 17: 23678

    Article  Google Scholar 

  69. Zhang H, Xiao H, Zhou P, et al. 119-W monolithic single-mode 1173-nm Raman fiber laser. IEEE Photonic J, 2013, 5: 1501706

    Article  Google Scholar 

  70. Surin A A, Borisenko T E, Larin S V. Generation of 14 W at 589 nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal. Opt Lett, 2016, 41: 2644–2647

    Article  Google Scholar 

  71. Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser. Nat Photon, 2010, 38: 231–235

    Google Scholar 

  72. Churkin D V, Sugavanam S, Vatnik I D, et al. Recent advances in fundamentals and applications of random fiber lasers. Adv Opt Photon, 2015, 7: 516–569

    Article  Google Scholar 

  73. Du X, Zhang H, Xiao H, et al. High-power random distributed feedback fiber laser: From science to application. Annalen Der Physik, 2016, 528: 649–662

    Article  Google Scholar 

  74. Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys Lett, 2014, 11: 075104

    Article  Google Scholar 

  75. Du X, Zhang H, Wang X, et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Opt Lett, 2016, 41: 571–574

    Article  Google Scholar 

  76. Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt Express, 2015, 23: 17138–17144

    Article  Google Scholar 

  77. Du X, Zhang H, Ma P, et al. Kilowatt-level fiber amplifier with spectral- broadening-free property, seeded by a random fiber laser. Opt Lett, 2015, 40: 5311–5314

    Article  Google Scholar 

  78. Dontsova E I, Kablukov S I, Vatnik I D, et al. Frequency doubling of Raman fiber lasers with random distributed feedback. Opt Lett, 2016, 41: 1439–1442

    Article  Google Scholar 

  79. Cui C, Zhang L, Jiang H, et al. 33 W continuous-wave single-frequency green laser by frequency doubling of a single-mode YDFA. Chin Opt Lett, 2017, 15: 041402–41405

    Article  Google Scholar 

  80. Du X, Zhang H, Wang X, et al. Investigation on random distributed feedback Raman fiber laser with linear polarized output. Photon Res, 2015, 3: 28–31

    Article  Google Scholar 

  81. Zlobina E A, Kablukov S I, Babin S A. Linearly polarized random fiber laser with ultimate efficiency. Opt Lett, 2015, 40: 4074–4077

    Article  Google Scholar 

  82. Babin S A, Zlobina E A, Kablukov S I, et al. High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth. Sci Rep, 2016, 6: 22625

    Article  Google Scholar 

  83. Xu J, Zhou P, Leng J, et al. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source. Sci Rep, 2016, 6: 35213

    Article  Google Scholar 

  84. Xu J, Lou Z, Ye J, et al. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: Experimental investigations and theoretical prospects. Opt Express, 2017, 25: 5609–5617

    Article  Google Scholar 

  85. Lou Z, Xu J, Huang L, et al. Linearly-polarized random distributed feedback Raman fiber laser with record power. Laser Phys Lett, 2017, 14: 055102

    Article  Google Scholar 

  86. Olausson C B, Shirakawa A, Chen M, et al. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm. Opt Express, 2010, 18: 16345–16352

    Article  Google Scholar 

  87. Xu J, Huang L, Leng J, et al. 1.01 kW superfluorescent source in allfiberized MOPA configuration. Opt Express, 2015, 23: 5485–5490

    Article  Google Scholar 

  88. Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photonic Tech Lett, 2012, 24: 1088–1090

    Article  Google Scholar 

  89. Tao R, Ma P, Wang X, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photon Res, 2015, 3: 86–93

    Article  Google Scholar 

  90. Wang P, Clarkson W A. High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source. Opt Lett, 2007, 32: 2605–2607

    Article  Google Scholar 

  91. Huang Z, Liu C, Li J, et al. Fiber polarization control based on a fast locating algorithm. Appl Opt, 2013, 52: 6663

    Article  Google Scholar 

  92. Wang Y, Feng Y, Wang X, et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control. Appl Opt, 2017, 56: 2760–2765

    Article  Google Scholar 

  93. Ma P, Huang L, Wang X, et al. High power broadband all fiber superfluorescent source with linear polarization and near diffraction-limited beam quality. Opt Express, 2016, 24: 1082–1088

    Article  Google Scholar 

  94. Ma P, Tao R, Wang X, et al. High-power narrow-band and polarization- maintained all fiber superfluorescent source. IEEE Photonic Tech Lett, 2015, 27: 879–882

    Article  Google Scholar 

  95. Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser. IEEE J Sel Top Quant Electron, 2018, 24: 0900608

    Google Scholar 

  96. Xu J, Huang L, Jiang M, et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photon Res, 2017, 5: 350

    Article  Google Scholar 

  97. Xu J, Zhou P, Liu W, et al. Exploration in performance scaling and new application avenues of superfluorescent fiber source. IEEE J Sel Top Quant Electron, 2018, 24: 0900710

    Google Scholar 

  98. Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier. Opt Lett, 2010, 35: 1542

    Article  Google Scholar 

  99. Su R, Liu Y, Yang B, et al. Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm. J Opt, 2017, 19: 045802

    Article  Google Scholar 

  100. Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization. Opt Lett, 1997, 22: 907–909

    Article  Google Scholar 

  101. Zhou P, Liu Z, Wang X, et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J Sel Top Quant Electron, 2009, 15: 248–256

    Article  Google Scholar 

  102. Yu CX, Shatrovoy O, Fan TY. All-glass fiber amplifier pumped by ultra-high brightness pumps. In: Proceedings Volume 9728, Fiber Lasers XIII: Technology, Systems, and Applications. San Francisco, California, 2016

    Google Scholar 

  103. Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier. Opt Lett, 2016, 41: 5202–5205

    Article  Google Scholar 

  104. Rulkov AB, Popov SV, Taylor JR, et al. Narrow-line 23W linearly polarized fiber raman laser applied to frequency doubling to 589 nm. In: IEEE Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. Long Beach, CA: IEEE, 2006

    Google Scholar 

  105. Zhang L, Hu J, Wang J, et al. Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star. Opt Lett, 2012, 37: 4796

    Article  Google Scholar 

  106. Zhang L, Yuan Y, Liu Y, et al. 589 nm laser generation by frequency doubling of a single-frequency Raman fiber amplifier in PPSLT. Appl Opt, 2013, 52: 1636

    Article  Google Scholar 

  107. Chen M, Shirakawa A, Olausson C B, et al. 87 W, narrow-linewidth, linearly-polarized 1178 nm photonic bandgap fiber amplifier. Opt Express, 2015, 23: 3134

    Article  Google Scholar 

  108. Zhang L, Jiang H, Yang X, et al. High-power single-frequency 1336 nm Raman fiber amplifier. J Lightwave Technol, 2016, 34: 4907–4911

    Article  Google Scholar 

  109. Zhang L, Liu C, Jiang H, et al. Kilowatt ytterbium-Raman fiber laser. Opt Express, 2014, 22: 18483

    Article  Google Scholar 

  110. Zhang H, Xiao H, Zhou P, et al. High power Yb-Raman combined nonlinear fiber amplifier. Opt Express, 2014, 22: 10248

    Article  Google Scholar 

  111. Rowen EE, Vashdi G, Lasri J, et al. A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow. In: Proceedings Volume 8601, Fiber Lasers X: Technology, Systems, and Applications. San Francisco, California, 2013

    Google Scholar 

  112. Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm. IEEE Photonic Tech Lett, 2015, 27: 628–630

    Article  Google Scholar 

  113. Runcorn T H, Murray R T, Kelleher E J R, et al. Duration-tunable picosecond source at 560 nm with watt-level average power. Opt Lett, 2015, 40: 3085–3088

    Article  Google Scholar 

  114. Zhang L, Jiang H, Cui S, et al. Integrated ytterbium-Raman fiber amplifier. Opt Lett, 2014, 39: 1933

    Article  Google Scholar 

  115. Ma P, Zhang H, Huang L, et al. Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism. Opt Express 2015, 23: 26499–26508

    Article  Google Scholar 

  116. Xu S, Li C, Zhang W, et al. Opt Letter, 2013, 38: 501–503

    Article  Google Scholar 

  117. Yang Q, Xu S H, Li C, et al. A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+ -doped germanate glass fiber at 1.95 μm. Chin Phys Lett, 2015, 32: 094206

    Article  Google Scholar 

  118. Mo S, Xu S, Huang X, et al. A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser. Opt Express, 2013, 21: 12419

    Article  Google Scholar 

  119. Zhang L, Cui S, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Opt Express, 2013, 21: 5456–5462

    Article  Google Scholar 

  120. Jeong Y, Nilsson J, Sahu J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt Lett, 2005, 30: 459–461

    Article  Google Scholar 

  121. Ma P, Zhou P, Ma Y, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality. Appl Opt, 2013, 52: 4854–4857

    Article  Google Scholar 

  122. Su R, Zhou P, Ma P, et al. High-peak-power, single-frequency, single- mode, linearly polarized, nanosecond all-fiber laser based on selfphase modulation compensation. Appl Opt, 2013, 52: 7331–7335

    Article  Google Scholar 

  123. Liu J, Shi H, Liu K, et al. 210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA. Opt Express, 2014, 22: 13572–13578

    Article  Google Scholar 

  124. Agrawal G P. Nonlinear Fiber Optics. Burlington, MA: Academic Press, 2007

    MATH  Google Scholar 

  125. Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers. Opt Express, 2014, 22: 17735–17744

    Article  Google Scholar 

  126. Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition. Opt Lett, 2016, 41: 3964–3967

    Article  Google Scholar 

  127. Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fiber superfluorescent source with ultranarrow linewidth. IEEE Photonic J, 2015, 7: 1–6

    Google Scholar 

  128. Jiang M, Xu H, Zhou P, et al. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity. Appl Opt, 2016, 55: 6121–6124

    Article  Google Scholar 

  129. Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power. In: Proceedings of SPIE. San Francisco, California, 2014

    Google Scholar 

  130. Avdokhin1 A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings Volume 9347, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV. San Francisco, California, 2015

    Google Scholar 

  131. Ma P, Tao R, Su R, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality. Opt Express, 2016, 24: 4187–4195

    Article  Google Scholar 

  132. Platonov N, Yagodkin R, De La Cruz J, et al. 1.5 kW linear polarized on PM fiber and 2 kW on non-PM fiber narrow linewidth CW diffraction- limited fiber amplifier. In: Proceedings Volume 10085, Components and Packaging for Laser Systems III. San Francisco, California, 2017

    Google Scholar 

  133. Fujita E, Mashiko Y, Asaya S, et al. High power narrow-linewidth linearly- polarized 1610 nm Er:Yb all-fiber MOPA. Opt Express, 2016, 24: 26255

    Article  Google Scholar 

  134. Jelger P, Wang P, Sahu J K, et al. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection. Opt Express, 2008, 16: 9507–9512

    Article  Google Scholar 

  135. Zeil P, Laurell F. On the tunability of a narrow-linewidth Yb-fiber laser from three- to four-level lasing behaviour. Opt Express, 2011, 19: 13940–13948

    Article  Google Scholar 

  136. Du X, Zhang H, Wang X, et al. Tunable random distributed feedback fiber laser operating at 1 μm. Appl Opt, 2015, 54: 908

    Article  Google Scholar 

  137. Kim J W, Jelger P, Sahu J K, et al. High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating. Opt Lett, 2008, 33: 1204–1206

    Article  Google Scholar 

  138. Nilsson J, Alam S U, Alvarez-Chavez J A, et al. High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers. IEEE J Quantum Elect, 2003, 39: 987–994

    Article  Google Scholar 

  139. McComb T S, Sims R A, Willis C C C, et al. High-power widely tunable thulium fiber lasers. Appl Opt, 2010, 49: 6236

    Article  Google Scholar 

  140. Wang X, Jin X, Zhou P, et al. High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier. Opt Express, 2015, 23: 3382

    Article  Google Scholar 

  141. Li Z, Alam S U, Jung Y, et al. All-fiber, ultra-wideband tunable laser at 2 μm. Opt Lett, 2013, 38: 4739–4742

    Article  Google Scholar 

  142. Otto H J, Stutzki F, Modsching N, et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier. Opt Lett, 2014, 39: 6446

    Article  Google Scholar 

  143. Teh P S, Alam S, Lewis R J, et al. Single polarization picosecond fiber MOPA power scaled to beyond 500 W. Laser Phys Lett, 2014, 11: 085103

    Article  Google Scholar 

  144. Ma P, Tao R, Huang L, et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and neardiffraction- limited beam quality. J Opt, 2015, 17: 075501

    Article  Google Scholar 

  145. Su R, Xu J, Zhou P, et al. Single-frequency linearly-polarized 1083nm all fiber nanosecond laser. Appl Phys B, 2012, 109: 617–620

    Article  Google Scholar 

  146. Ran Y, Su R, Ma P, et al. High power narrow-linewidth linearly polarized nanosecond all-fiber amplifier with near-diffraction-limited beam quality. J Opt, 18: 015506

  147. Ran Y, Su R, Ma P, et al. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation. Opt Express, 2015, 23: 25896

    Article  Google Scholar 

  148. Shi H, Liu J, Liu K, et al. 160 W average power single-polarization, nanosecond pulses generation from diode-seeded thulium-doped allfiber MOPA system. In: Proceedings Volume 9344, Fiber Lasers XII: Technology, Systems, and Applications. San Francisco, California, 2015

    Google Scholar 

  149. Yang J, Wang Y, Zhang G, et al. High-power highly linear-polarized nanosecond all-fiber MOPA at 2040 nm. IEEE Photonic Tech L, 2015, 27: 986–989

    Article  Google Scholar 

  150. Hemming A, Richards J, Simakov N, et al. Pulsed operation of a resonantly pumped, linearly polarised, large mode area holmium-doped fibre amplifier. Opt Express, 2014, 22: 7186

    Article  Google Scholar 

  151. Chen K K, Price J H V, Alam S U, et al. Polarisation maintaining 100 W Yb-fiber MOPA producing μJ pulses tunable in duration from 1 to 21 ps. Opt Express, 2010, 18: 14385

    Article  Google Scholar 

  152. Yu H L, Ma P F, Tao R M, et al. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noiselike pulses. Laser Phys Lett, 2015, 12: 065103

    Article  Google Scholar 

  153. Liu J, Liu C, Shi H, et al. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier. Opt Express, 2016, 24: 15005

    Article  Google Scholar 

  154. Kim K, Peng X, Lee W, et al. Monolithic polarization maintaining fiber chirped pulse amplification (CPA) System for high energy femtosecond pulse generation at 1.03 μm. Opt Express, 2015, 23: 4766–4770

    Article  Google Scholar 

  155. Nicholson J W, Desantolo A, Kaenders W, et al. Self-frequencyshifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier. Opt Express, 2016, 24: 23396

    Article  Google Scholar 

  156. Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE J Sel Top Quant Electron, 2005, 11: 567–577

    Article  Google Scholar 

  157. Brignon A, Ed. Coherent Laser Beam Combining. Weinheim: Wiley, 2013

  158. Liu Z J, Zhou P, Xu X J, et al. Coherent beam combining of high power fiber lasers: Progress and prospect. Sci China Tech Sci, 2013, 56: 1597–1606

    Article  Google Scholar 

  159. Zhou P, Liu Z, Wang X, et al. Coherent beam combination of twodimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm. Appl Phys Lett, 2009, 94: 231106

    Article  Google Scholar 

  160. Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt Lett, 2011, 36: 2686–2688

    Article  Google Scholar 

  161. Klenke A, Breitkopf S, Kienel M, et al. 530 W, 13 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt Lett, 2013, 38: 2283

    Article  Google Scholar 

  162. Augst S J, Ranka J K, Fan T Y, et al. Beam combining of ytterbium fiber amplifiers. J Opt Soc Am B, 2007, 24: 1707–1715

    Article  Google Scholar 

  163. Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers. IEEE J Sel Top Quant Electron, 2009, 15: 337–343

    Article  Google Scholar 

  164. Zheng Y, Yang Y, Wang J, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express, 2016, 24: 12063

    Article  Google Scholar 

  165. Zhou P, Ma Y, Wang X, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm. Opt Lett, 2009, 34: 2939–2941

    Article  Google Scholar 

  166. Zhou P, Ma Y, Wang X, et al. Coherent beam combination of a hexagonal distributed high power fiber amplifier array. Appl Opt, 2009, 48: 6537–6540

    Article  Google Scholar 

  167. Ma P, Zhou P, Wang X, et al. Coherent polarization beam combining of four 200-W-level fiber amplifiers. Appl Phys Express, 2014, 7: 022703

    Article  Google Scholar 

  168. Flores A, Ehrenreich T, Holten R, et al. Multi-kW Coherent Combining of Fiber Lasers Seeded with Pseudo Random Phase Modulated Light. In: Proceedings Volume 9728, Fiber Lasers XIII: Technology, Systems, and Applications. San Francisco, California, 2015

    Google Scholar 

  169. McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers Into a 2.4-kW beam. IEEE J Sel Top Quant Electron, 2014, 20: 174–181

    Article  Google Scholar 

  170. Kienel M, Müller M, Klenke A, et al. 12 mJ and 1 kW ultrafast fiberlaser system using spatial and temporal coherent pulse addition. In: Proceedings of the Advanced Solid State Lasers. Optical Society of America, 2016

    Google Scholar 

  171. Wei L W, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for advanced virgo. Opt Lett, 2016, 41: 5817–5820

    Article  Google Scholar 

  172. Honea E C, Afzal R, Savage-Leuchs M P, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness. In: Proceedings of SPIE. San Francisco, California, 2013

    Google Scholar 

  173. Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling. In: Proceedings Volume 9730, Components and Packaging for Laser Systems II. San Francisco, California, 2016

    Google Scholar 

  174. Shah L, Sims R A, Kadwani P, et al. High-power spectral beam combining of linearly polarized Tm:fiber lasers. Appl Opt, 2015, 54: 757

    Article  Google Scholar 

  175. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett, 2003, 91: 233901

    Article  Google Scholar 

  176. Ma P, Zhou P, Ma Y, et al. Generation of azimuthally and radially polarized beams by coherent polarization beam combination. Opt Lett, 2012, 37: 2658–2660

    Article  Google Scholar 

  177. Li X, Xu X, Shang Y. Study on high power continuous-wave mid-infrared optical parametric oscillator. In: Proceedings Volume 9251, Technologies for Optical Countermeasures XI; and High-Power Lasers 2014: Technology and Systems. Amsterdam, Netherlands, 2014

    Google Scholar 

  178. Shang Y, Xu J, Wang P, et al. Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source. Opt Express, 2016, 24: 21684

    Article  Google Scholar 

  179. Zlobina E A, Kablukov S I, Babin S A. All-PM CW fiber optical parametric oscillator. Opt Express, 2016, 24: 25409

    Article  Google Scholar 

  180. Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys, 2006, 78: 1135–1184

    Article  Google Scholar 

  181. Zhu Z, Brown T G. Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers. J Opt Soc Am B, 2004, 21: 249–257

    Article  Google Scholar 

  182. Zhang B, Jin A, Ma P, et al. High-power near-infrared linearly-polarized supercontinuum generation in a polarization-maintaining Yb-doped fiber amplifier. Opt Express, 2015, 23: 28683

    Article  Google Scholar 

  183. Zhang P, Xu X, Yu H, et al. All-fiber-integrated linearly polarized fiber laser delivering 476 μJ, 50 kHz, nanosecond pulses for ultrasonic generation. Appl Opt, 2016, 55: 3719

    Article  Google Scholar 

  184. Walton DT, Li MJ, Nolan DA, et al. Challenges in single-polarization fibers. In: Proceedings Volume 5709, Fiber Lasers II: Technology, Systems, and Applications. San Jose, California, 2005

    Google Scholar 

  185. Kasai Y, Sakamoto S, Takahashi Y, et al. High-brightness laser diode module over 300W with 100μm/Na 0.22 fiber. In: Proceedings Volume 9733, High-Power Diode Laser Technology and Applications XIV. San Francisco, California, 2016

    Google Scholar 

  186. Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbiumdoped fiber laser and its application in tandem pump. Appl Opt, 2015, 54: 8166

    Article  Google Scholar 

  187. Wirth C, Schmidt O, Kliner A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW. Opt Lett, 2011, 36: 3061–3063

    Article  Google Scholar 

  188. Chen Y, Xiao H, Xu J, et al. Laser diode-pumped dual-cavity highpower fiber laser emitting at 1150 nm employing hybrid gain. Appl Opt, 2016, 55: 3824–3828

    Article  Google Scholar 

  189. Liu W, Ma P, Lv H, et al. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt Express, 2016, 24: 26715–26721

    Article  Google Scholar 

  190. Brochu G, Villeneuveb A, Faucher M, et al. SRS modeling in high power CW fiber lasers for component optimization. In: Proceedings of SPIE. Components and Packaging for Laser Systems III. 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pu Zhou or ZeJin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Huang, L., Xu, J. et al. High power linearly polarized fiber laser: Generation, manipulation and application. Sci. China Technol. Sci. 60, 1784–1800 (2017). https://doi.org/10.1007/s11431-017-9124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9124-4

Keywords

Navigation